Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
2.
J Colloid Interface Sci ; 675: 792-805, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002230

RESUMO

Sodium-ion battery (SIB) is one of potential alternatives to lithium-ion battery, because of abundant resources and lower price of sodium. High electrical conductivity and long-term durability of MXene are advantageous as the anode material of SIB, but low energy density restricts applications. Tin phosphide possesses high theoretical capacity, low redox potential, and large energy density, but volume expansion reduces its cycling stability. In this study, tin phosphide particles are in-situ encapsulated into MXene conductive networks (SnxPy/MXene) by hydrothermal and phosphorization processes as novel anode materials of SIB. MXene amounts and hydrothermal durations are investigated to evenly distribute SnxPy in MXene. After 100 cycles, SnxPy/MXene reaches high specific capacities of 438.8 and 314.1 mAh/g at 0.2 and 1.0 A/g, respectively. The capacity retentions of 6.0% and 73.6% at 0.2 A/g are respectively obtained by SnxPy and SnxPy/MXene. The better specific capacity and cycling stability of SnxPy/MXene are attributed to less volume expansion of SnxPy during charge/discharge processes and relieved self-stacking of MXene by encapsulating SnxPy particles between MXene layers. Electrochemical impedance spectroscopy and Galvanostatic intermittent titration technique are also applied to analyze the charge storage mechanism in SIB. Higher sodium ion diffusion coefficient and smaller charge-transfer resistance are obtained by SnxPy/MXene.

3.
Food Chem ; 455: 139920, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850994

RESUMO

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.


Assuntos
Cromanos , Frutas , Grafite , Nitrogênio , Tantálio , Grafite/química , Frutas/química , Nitrogênio/química , Tantálio/química , Cromanos/química , Cromanos/análise , Teoria da Densidade Funcional , Técnicas Eletroquímicas , Limite de Detecção , Eletrodos , Ferro/química , Ferro/análise
4.
J Colloid Interface Sci ; 677(Pt A): 502-511, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106775

RESUMO

Metal-organic framework (MOF) derivatives with tunable pore structure and improved conductivity are intensively designed as electroactive materials. Incorporating structure directing agents (SDA) is beneficial for designing MOF derivatives with excellent electrochemical performances. Ammonium fluoroborate has been reported as an effective SDA, coupled with cobalt salt and 2-methylimidazole, to synthesize zeolitic imidazolate framework-67 (ZIF-67) derivatives for charge storage. However, the synthetic environment for growing cobalt-based active materials is relatively complex. In this study, cobalt tetrafluoroborate (Co(BF4)2) is proposed as a novel cobalt precursor, supplementing cobalt ions and acting as the SDA in a single chemical, to synthesize the cobalt-based electroactive material of energy storage electrodes. Interactions between solvent molecules and solutes play significant roles on the morphology, composition, and electrochemical performance of active materials. Deionized water, methanol and ethanol are used as precursor solvents to understand their effects on material and electrochemical properties. The optimal electrode presents a specific capacitance of 608.3 F/g at 20 mV/s, attributed to the highest electrochemical surface area and evident compositions of cobalt fluoride and hydroxide. A battery supercapacitor hybrid achieves the maximum energy density of 45 Wh/kg at 429 W/kg. The CF retention of 100% and Coulombic efficiency of 99% are achieved after 10,000 cycles.

5.
Environ Pollut ; 356: 124196, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788992

RESUMO

This study involved the synthesis of a Ce2Sn2O7/Ag3PO4/V@g-C3N4 composite through hydrothermal methods, followed by mechanical grinding. The resulting heterojunction exhibited improved catalytic activity under visible light by effectively separating electrons and holes (e-/h+). The degradation of Tartrazine (TTZ) reached 93.20% within 50 min by employing a ternary composite at a concentration of 10 mg L-1, along with 6 mg L-1 of PS. The highest pseudo-first-order kinetic constant (0.1273 min-1 and R2 = 0.951) was observed in this system. The dual Z-scheme heterojunction is developed by Ce2Sn2O7, Ag3PO4, and V@g-C3N4, and it may increase the visible light absorption range while also accelerating charge carrier transfer and separation between catalysts. The analysis of the vulnerability positions and degradation pathways of TTZ involved the utilization of density functional theory (DFT) and gas chromatography-mass spectrometry (GC-MS) to examine the intermediate products. Therefore, Ce2Sn2O7/Ag3PO4/V@g-C3N4 is an excellent ternary nanocomposite for the remediation of pollutants.


Assuntos
Compostos de Prata , Tartrazina , Cinética , Catálise , Compostos de Prata/química , Tartrazina/química , Sulfatos/química , Aditivos Alimentares/química , Teoria da Densidade Funcional , Cério/química , Compostos de Nitrogênio/química , Grafite , Fosfatos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa