Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.967
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474362

RESUMO

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Assuntos
Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Receptores de TIE/metabolismo , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Células Endoteliais/citologia , Células Endoteliais/patologia , Células HEK293 , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Fígado/irrigação sanguínea , Fígado/patologia , Cirrose Hepática/diagnóstico , Camundongos Endogâmicos C57BL
2.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677513

RESUMO

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , Temperatura
3.
Cell ; 166(3): 651-663, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27374333

RESUMO

Cellular bodies such as P bodies and PML nuclear bodies (PML NBs) appear to be phase-separated liquids organized by multivalent interactions among proteins and RNA molecules. Although many components of various cellular bodies are known, general principles that define body composition are lacking. We modeled cellular bodies using several engineered multivalent proteins and RNA. In vitro and in cells, these scaffold molecules form phase-separated liquids that concentrate low valency client proteins. Clients partition differently depending on the ratio of scaffolds, with a sharp switch across the phase diagram diagonal. Composition can switch rapidly through changes in scaffold concentration or valency. Natural PML NBs and P bodies show analogous partitioning behavior, suggesting how their compositions could be controlled by levels of PML SUMOylation or cellular mRNA concentration, respectively. The data suggest a conceptual framework for considering the composition and control thereof of cellular bodies assembled through heterotypic multivalent interactions.


Assuntos
Células Artificiais/química , Compartimento Celular , Organelas/química , Proteínas/química , Motivos de Aminoácidos , Composição Corporal , Proteínas de Transporte/química , Linhagem Celular , Núcleo Celular/química , Citoplasma , Eletroquímica , Células HeLa , Humanos , Técnicas In Vitro , Estrutura Molecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Engenharia de Proteínas , Ubiquitinas/química , Leveduras
4.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402365

RESUMO

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Assuntos
Proteínas Nucleares , Síndrome de Sotos , Animais , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferases/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Mamíferos/metabolismo , Histona-Lisina N-Metiltransferase/genética
5.
Nature ; 611(7937): 769-779, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385529

RESUMO

APOE4 is the strongest genetic risk factor for Alzheimer's disease1-3. However, the effects of APOE4 on the human brain are not fully understood, limiting opportunities to develop targeted therapeutics for individuals carrying APOE4 and other risk factors for Alzheimer's disease4-8. Here, to gain more comprehensive insights into the impact of APOE4 on the human brain, we performed single-cell transcriptomics profiling of post-mortem human brains from APOE4 carriers compared with non-carriers. This revealed that APOE4 is associated with widespread gene expression changes across all cell types of the human brain. Consistent with the biological function of APOE2-6, APOE4 significantly altered signalling pathways associated with cholesterol homeostasis and transport. Confirming these findings with histological and lipidomic analysis of the post-mortem human brain, induced pluripotent stem-cell-derived cells and targeted-replacement mice, we show that cholesterol is aberrantly deposited in oligodendrocytes-myelinating cells that are responsible for insulating and promoting the electrical activity of neurons. We show that altered cholesterol localization in the APOE4 brain coincides with reduced myelination. Pharmacologically facilitating cholesterol transport increases axonal myelination and improves learning and memory in APOE4 mice. We provide a single-cell atlas describing the transcriptional effects of APOE4 on the aging human brain and establish a functional link between APOE4, cholesterol, myelination and memory, offering therapeutic opportunities for Alzheimer's disease.


Assuntos
Apolipoproteína E4 , Encéfalo , Colesterol , Fibras Nervosas Mielinizadas , Oligodendroglia , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Autopsia , Células-Tronco Pluripotentes Induzidas , Neurônios/metabolismo , Neurônios/patologia , Heterozigoto , Transporte Biológico , Homeostase , Análise de Célula Única , Memória , Envelhecimento/genética , Perfilação da Expressão Gênica , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia
6.
Nature ; 595(7867): 409-414, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194038

RESUMO

Social interactions among animals mediate essential behaviours, including mating, nurturing, and defence1,2. The gut microbiota contribute to social activity in mice3,4, but the gut-brain connections that regulate this complex behaviour and its underlying neural basis are unclear5,6. Here we show that the microbiome modulates neuronal activity in specific brain regions of male mice to regulate canonical stress responses and social behaviours. Social deviation in germ-free and antibiotic-treated mice is associated with elevated levels of the stress hormone corticosterone, which is primarily produced by activation of the hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy, antagonism of glucocorticoid receptors, or pharmacological inhibition of corticosterone synthesis effectively corrects social deficits following microbiome depletion. Genetic ablation of glucocorticoid receptors in specific brain regions or chemogenetic inactivation of neurons in the paraventricular nucleus of the hypothalamus that produce corticotrophin-releasing hormone (CRH) reverse social impairments in antibiotic-treated mice. Conversely, specific activation of CRH-expressing neurons in the paraventricular nucleus induces social deficits in mice with a normal microbiome. Via microbiome profiling and in vivo selection, we identify a bacterial species, Enterococcus faecalis, that promotes social activity and reduces corticosterone levels in mice following social stress. These studies suggest that specific gut bacteria can restrain the activation of the HPA axis, and show that the microbiome can affect social behaviours through discrete neuronal circuits that mediate stress responses in the brain.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Microbioma Gastrointestinal/fisiologia , Neurônios/metabolismo , Comportamento Social , Estresse Psicológico , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Enterococcus faecalis/metabolismo , Vida Livre de Germes , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 120(44): e2305375120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871208

RESUMO

Plastic deformation in cells and tissues has been found to play crucial roles in collective cell migration, cancer metastasis, and morphogenesis. However, the fundamental question of how plasticity is initiated in individual cells and then propagates within the tissue remains elusive. Here, we develop a mechanism-based theory of cellular and tissue plasticity that accounts for all key processes involved, including the activation and development of active contraction at different scales as well as the formation of endocytic vesicles on cell junctions and show that this theory achieves quantitative agreement with all existing experiments. Specifically, it reveals that, in response to optical or mechanical stimuli, the myosin contraction and thermal fluctuation-assisted formation and pinching of endocytic vesicles could lead to permanent shortening of cell junctions and that such plastic constriction can stretch neighboring cells and trigger their active contraction through mechanochemical feedbacks and eventually their plastic deformations as well. Our theory predicts that endocytic vesicles with a size around 1 to 2 µm will most likely be formed and a higher irreversible shortening of cell junctions could be achieved if a long stimulation is split into multiple short ones, all in quantitative agreement with experiments. Our analysis also shows that constriction of cells in tissue can undergo elastic/unratcheted to plastic/ratcheted transition as the magnitude and duration of active contraction increases, ultimately resulting in the propagation of plastic deformation waves within the monolayer with a constant speed which again is consistent with experimental observations.


Assuntos
Junções Intercelulares , Morfogênese/fisiologia , Movimento Celular/fisiologia
8.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35899604

RESUMO

Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.


Assuntos
Endoderma , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Endoderma/metabolismo , Feminino , Camadas Germinativas , Humanos , Mamíferos , Camundongos , Organoides , Gravidez , Prosencéfalo
9.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36790856

RESUMO

Potential miRNA-disease associations (MDA) play an important role in the discovery of complex human disease etiology. Therefore, MDA prediction is an attractive research topic in the field of biomedical machine learning. Recently, several models have been proposed for this task, but their performance limited by over-reliance on relevant network information with noisy graph structure connections. However, the application of self-supervised graph structure learning to MDA tasks remains unexplored. Our study is the first to use multi-view self-supervised contrastive learning (MSGCL) for MDA prediction. Specifically, we generated a learner view without association labels of miRNAs and diseases as input, and utilized the known association network to generate an anchor view that provides guiding signals for the learner view. The graph structure was optimized by designing a contrastive loss to maximize the consistency between the anchor and learner views. Our model is similar to a pre-trained model that continuously optimizes upstream tasks for high-quality association graph topology, thereby enhancing the latent representation of association predictions. The experimental results show that our proposed method outperforms state-of-the-art methods by 2.79$\%$ and 3.20$\%$ in area under the receiver operating characteristic curve (AUC) and area under the precision/recall curve (AUPR), respectively.


Assuntos
Aprendizado de Máquina , MicroRNAs , Humanos , Área Sob a Curva , MicroRNAs/genética , Curva ROC
10.
Mol Cell Proteomics ; 22(6): 100562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142056

RESUMO

Modern mass spectrometers routinely allow deep proteome coverage in a single experiment. These methods are typically operated at nanoflow and microflow regimes, but they often lack throughput and chromatographic robustness, which is critical for large-scale studies. In this context, we have developed, optimized, and benchmarked LC-MS methods combining the robustness and throughput of analytical flow chromatography with the added sensitivity provided by the Zeno trap across a wide range of cynomolgus monkey and human matrices of interest for toxicological studies and clinical biomarker discovery. Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) data-independent acquisition (DIA) experiments with Zeno trap activated (Zeno SWATH DIA) provided a clear advantage over conventional SWATH DIA in all sample types tested with improved sensitivity, quantitative robustness, and signal linearity as well as increased protein coverage by up to 9-fold. Using a 10-min gradient chromatography, up to 3300 proteins were identified in tissues at 2 µg peptide load. Importantly, the performance gains with Zeno SWATH translated into better biological pathway representation and improved the ability to identify dysregulated proteins and pathways associated with two metabolic diseases in human plasma. Finally, we demonstrate that this method is highly stable over time with the acquisition of reliable data over the injection of 1000+ samples (14.2 days of uninterrupted acquisition) without the need for human intervention or normalization. Altogether, Zeno SWATH DIA methodology allows fast, sensitive, and robust proteomic workflows using analytical flow and is amenable to large-scale studies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Humanos , Espectrometria de Massas em Tandem/métodos , Macaca fascicularis , Proteômica/métodos , Software , Cromatografia Líquida/métodos , Proteoma
11.
Nano Lett ; 24(26): 7953-7961, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888317

RESUMO

The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5ß1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5ß1 and αvß3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.


Assuntos
Adesão Celular , Diferenciação Celular , Mecanotransdução Celular , Células-Tronco Mesenquimais , Propriedades de Superfície , Células-Tronco Mesenquimais/citologia , Humanos , Integrina alfa5beta1/metabolismo , Osteogênese , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Ligantes , Adesões Focais
12.
Nano Lett ; 24(2): 632-639, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175932

RESUMO

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.

13.
J Cell Mol Med ; 28(3): e18084, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38130025

RESUMO

IRF family genes have been shown to be crucial in tumorigenesis and tumour immunity. However, information about the role of IRF in the systematic assessment of pan-cancer and in predicting the efficacy of tumour therapy is still unknown. In this work, we performed a systematic analysis of IRF family genes in 33 tumour samples, including expression profiles, genomics and clinical characteristics. We then applied Single-Sample Gene-Set Enrichment Analysis (ssGSEA) to calculate IRF-scores and analysed the impact of IRF-scores on tumour progression, immune infiltration and treatment efficacy. Our results showed that genomic alterations, including SNPs, CNVs and DNA methylation, can lead to dysregulation of IRFs expression in tumours and participate in regulating multiple tumorigenesis. IRF-score expression differed significantly between 12 normal and tumour samples and the impact on tumour prognosis and immune infiltration depended on tumour type. IRF expression was correlated to drug sensitivity and to the expression of immune checkpoints and immune cell infiltration, suggesting that dysregulation of IRF family expression may be a critical factor affecting tumour drug response. Our study comprehensively characterizes the genomic and clinical profile of IRFs in pan-cancer and highlights their reliability and potential value as predictive markers of oncology drug efficacy. This may provide new ideas for future personalized oncology treatment.


Assuntos
Neoplasias , Humanos , Biomarcadores , Carcinogênese , Transformação Celular Neoplásica , Imunoterapia , Reprodutibilidade dos Testes , Microambiente Tumoral , Fatores Reguladores de Interferon
14.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980287

RESUMO

Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.

15.
Clin Immunol ; 259: 109892, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185269

RESUMO

Radioresistance and metastasis are critical issues in managing oral squamous cell carcinoma (OSCC). Although immune checkpoint inhibitors (ICIs) has been recommended to treat OSCC, lacking useful biomarkers limited their anti-cancer effectiveness. We found that guanylate binding protein 5 (GBP5) is upregulated in primary tumors and associates with radioresistance in OSCC. GBP5 expression causally associated with cellular radioresistance and migration ability in the OSCC cell variants. GBP5 upregulation was examined to be correlated with NF-κB activation and programmed cell death-ligand 1 (PD-L1) elevation in OSCC samples. GBP5 knockdown was mitigated, but overexpression enhanced, NF-κB activity and PD-L1 expression in the OSCC cells. NF-κB inhibition by SN50 dramatically suppressed the GBP5-forested irradiation resistance, cellular migration ability and PD-L1 expression in OSCC cells. Importantly, GBP5 upregulation predicted a favorable outcome in cancer patients received ICI treatment. Our findings provide GBP5 as a useful biomarker to predict the anti-OSCC effectiveness of irradiation and ICIs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Antígeno B7-H1 , Biomarcadores , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , NF-kappa B , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
16.
Prog Mater Sci ; 1422024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38745676

RESUMO

Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.

17.
Small ; 20(22): e2312238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319031

RESUMO

The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.


Assuntos
Acetaminofen , Dopamina , Técnicas Eletroquímicas , Titânio , Tirosina , Dispositivos Eletrônicos Vestíveis , Titânio/química , Acetaminofen/análise , Dopamina/análise , Tirosina/química , Técnicas Eletroquímicas/métodos , Humanos , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação
18.
Small ; : e2403710, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884192

RESUMO

Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.

19.
J Transl Med ; 22(1): 13, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166970

RESUMO

BACKGROUND: Radioresistance and lymph node metastasis are common phenotypes of refractory oral squamous cell carcinoma (OSCC). As a result, understanding the mechanism for radioresistance and metastatic progression is urgently needed for the precise management of refractory OSCC. Recently, immunotherapies, e.g. immune checkpoint inhibitors (ICIs), were employed to treat refractory OSCC; however, the lack of predictive biomarkers still limited their therapeutic effectiveness. METHODS: The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) databases and RT-PCR analysis were used to determine absent in melanoma 2 (AIM2) expression in OSCC samples. Colony-forming assay and trans-well cultivation was established for estimating AIM2 function in modulating the irradiation resistance and migration ability of OSCC cells, respectively. RT-PCR, Western blot and flow-cytometric analyses were performed to examine AIM2 effects on the expression of programmed death-ligand 1 (PD-L1) expression. Luciferase-based reporter assay and site-directed mutagenesis were employed to determine the transcriptional regulatory activity of Signal Transducer and Activator of Transcription 1 (STAT1) and NF-κB towards the AIM2-triggered PD-L1 expression. RESULTS: Here, we found that AIM2 is extensively upregulated in primary tumors compared to the normal adjacent tissues and acts as a poor prognostic marker in OSCC. AIM2 knockdown mitigated, but overexpression promoted, radioresistance, migration and PD-L1 expression via modulating the activity of STAT1/NF-κB in OSCC cell variants. AIM2 upregulation significantly predicted a favorable response in patients receiving ICI treatments. CONCLUSIONS: Our data unveil AIM2 as a critical factor for promoting radioresistance, metastasis and PD-L1 expression and as a potential biomarker for predicting ICI effectiveness on the refractory OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
20.
J Transl Med ; 22(1): 345, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600566

RESUMO

BACKGROUND: Hearing loss has been shown to be a risk factor for psychiatric disorders. In addition, long-term hearing loss is associated with increased hospitalization and mortality rates; however, the increased risk and duration of effect of hearing loss in combination with other chronic diseases on each psychiatric disorder are still not clearly defined. The purpose of this article is to clarify the risk of hearing loss for each disorder over time. METHODS: This was a retrospective cohort study, and a national health insurance research database in Taiwan was utilized. All (n = 1,949,101) Taiwanese residents who had a medical visit between 2000 and 2015 were included. Patients with hearing loss and a comparative retrospective cohort were analyzed. Every subject was tracked individually from their index date to identify the subjects who later received a diagnosis of a psychiatric disorder. The Kaplan‒Meier method was used to analyze the cumulative incidence of psychiatric disorders. Cox regression analysis was performed to identify the risk of psychiatric disorders. RESULTS: A total of 13,341 (15.42%) and 31,250 (9.03%) patients with and without hearing loss, respectively, were diagnosed with psychiatric disorders (P < 0.001). Multivariate analysis indicated that hearing loss significantly elevated the risk of psychiatric disorders (adjusted HR = 2.587, 95% CI 1.723-3.346, p < 0.001). CONCLUSION: Our findings indicate that patients with hearing loss are more likely to develop psychiatric disorders. Furthermore, the various psychiatric disorders are more likely to occur at different times. Our findings have important clinical implications, including a need for clinicians to implement early intervention for hearing loss and to pay close attention to patients' psychological status. Trial registration TSGHIRB No. E202216036.


Assuntos
Perda Auditiva , Transtornos Mentais , Humanos , Estudos de Coortes , Perda Auditiva/complicações , Perda Auditiva/epidemiologia , Incidência , Transtornos Mentais/complicações , Transtornos Mentais/epidemiologia , Fatores de Risco , Taiwan/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa