Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886871

RESUMO

It has been demonstrated that vascular endothelial growth factor B (VEGFB) and vascular endothelial growth factor receptor 1 (VEGFR1) play a vital role in regulating vascular biological function. However, the role of VEGFB and VEGFR1 in regulating fat deposition and skeletal muscle growth remains unclear. Therefore, this study was conducted to investigate the effects of VEGFB and VEGFR1 on fat deposition and skeletal muscle growth in mice. Our results showed that knockdown of VEGFB decreased body weight and iWAT index, stimulated the browning of mice iWAT with increased expression of UCP1, decreased the diameters of adipocytes, and elevated energy expenditure. In contrast, knockdown of VEGFB increased gastrocnemius (GAS) muscle index with increased proliferation of GAS muscle by expression of PCNA and Cyclin D1. Meanwhile, knockdown of endothelial VEGFR1 induced the browning of iWAT with increased expression of UCP1 and decreased diameters of adipocytes. By contrast, knockdown of endothelial VEGFR1 inhibited GAS muscle differentiation with decreased expression of MyoD. In conclusion, these results suggested that the loss of VEGFB/VEGFR1 signaling is associated with enhanced browning of inguinal white adipose tissue and skeletal muscle development. These results provided new insights into the regulation of skeletal muscle growth and regeneration, as well as fat deposition, suggesting the potential application of VEGFB/VEGFR1 as an intervention for the restriction of muscle diseases and obesity and related metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Desenvolvimento Muscular , Fator B de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Termogênese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
FASEB J ; 34(5): 7103-7117, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246800

RESUMO

Bile acids (BAs) have been implicated in regulation of intestinal epithelial signaling and function. This study aimed to investigate the effects of hyodeoxycholic acid (HDCA) on intestinal epithelial cell proliferation and explore the underlying mechanisms. IPEC-J2 cells and weaned piglets were treated with HDCA and the contributions of cellular signaling pathways, BAs metabolism profiles and gut bacteria were assessed. In vitro, HDCA suppressed IPEC-J2 proliferation via the BAs receptor FXR but not TGR5. In addition, HDCA inhibited the PI3K/AKT pathway, while knockdown of FXR or constitutive activation of AKT eliminated the inhibitory effects of HDCA, suggesting that FXR-dependent inhibition of PI3K/AKT pathway was involved in HDCA-suppressed IPEC-J2 proliferation. In vivo, dietary HDCA inhibited intestinal expression of proliferative markers and PI3K/AKT pathway in weaned piglets. Meanwhile, HDCA altered the BAs metabolism profiles, with decrease in primary BA and increase in total and secondary BAs in feces, and reduction of conjugated BAs in serum. Furthermore, HDCA increased abundance of the gut bacteria associated with BAs metabolism, and thereby induced BAs profiles alternation, which might indirectly contribute to HDCA-suppressed cell proliferation. Together, HDCA suppressed intestinal epithelial cell proliferation through FXR-PI3K/AKT signaling pathway, accompanied by alteration of BAs metabolism profiles induced by gut bacteria.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácido Desoxicólico/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sus scrofa , Suínos
3.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948148

RESUMO

It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.


Assuntos
Diferenciação Celular , Proliferação de Células , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Camundongos , Fator B de Crescimento do Endotélio Vascular/farmacologia
4.
J Cell Physiol ; 233(9): 7055-7066, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29384212

RESUMO

The N6-methyladenosine (m6A) modification plays a central role in epigenetic regulation of the mammalian transcriptome. m6A can be demethylated by the fat mass- and obesity-associated (FTO) protein and the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) protein. Much less is known about that whether m6A content is involved in POI (premature ovarian insufficiency) disease. In this case-controlled study, 69 POI and 53 tubal occlusion patients were recruited from the reproduction centers in our hospital. For the POI animal model experiment, ovarian tissue was obtained from ten POI and nine healthy mice. An m6A test kit was developed to determine the m6A content in the RNA, and qPCR and western blot were used to examine the mRNA and protein expression levels of FTO and ALKBH5. FACS was used to measure the levels of proliferation and apoptosis, and siRNA was used to establish FTO and ALKBH5 knockdown cell lines. Our results showed that the m6A content in the RNA from POI patients and POI mice was significantly higher than control groups and that POI was characterized by the content of m6A. The mRNA and protein expression levels of FTO were significantly lower in the POI patients than control group and were associated with a risk of POI. These data suggest that the decreased mRNA and protein expression levels of FTO may be responsible for the increase in m6A in POI, which may further increase the risk of complications of POI. High m6A should be investigated further as a novel potential biomarker of POI.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação da Expressão Gênica , Infertilidade/genética , Adenosina/metabolismo , Adulto , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Feminino , Inativação Gênica , Células da Granulosa/metabolismo , Humanos , Camundongos Endogâmicos ICR , Insuficiência Ovariana Primária/genética
5.
J Cell Mol Med ; 21(8): 1605-1618, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244646

RESUMO

Human embryonic stem cells (hESCs) can self-renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three-stage protocol. In our study, 0.1 µM E2 were applied to hESCs-derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up-regulated the expression of insulin-like growth factors (IGF)-1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC-derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron-secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2-caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)ß but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2-improved hNPC and hDA neuron differentiation through cross-talk between IGF-1 and ERß in vitro.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oligopeptídeos/farmacologia , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
6.
In Vitro Cell Dev Biol Anim ; 60(3): 258-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424378

RESUMO

It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.


Assuntos
Adipogenia , Proteína 4 Semelhante a Angiopoietina , Metabolismo dos Lipídeos , Animais , Adipogenia/genética , Proteína 4 Semelhante a Angiopoietina/genética , Autofagia/genética , Diferenciação Celular/genética , Suínos
7.
Mol Metab ; 73: 101747, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279828

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS: We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS: PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS: This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.


Assuntos
Obesidade , Prolil Hidroxilases , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Hidroxilação , Obesidade/metabolismo , Prolina/metabolismo , Prolil Hidroxilases/metabolismo , Termogênese/fisiologia
8.
Food Funct ; 13(3): 1232-1245, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35019933

RESUMO

The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Ácidos Araquidônicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxilipinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos
9.
Anim Nutr ; 7(2): 365-375, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34258424

RESUMO

Nutritional diarrhea and subsequent performance degradation in weaned piglets are major challenges for the pig industry. Bile acids (BA) can be added to the diet as emulsifiers. This experiment was conducted to investigate the effects of chenodeoxycholic acid (CDCA), a major primary BA, on growth performance, serum metabolic profiles and gut health in weaned piglets. A total of 72 healthy weaned piglets were randomly assigned to the control (CON) and the CDCA groups, which were feed a basal diet and the basal diet supplemented with 200 mg/kg CDCA for 30 d, respectively. Our results demonstrated that CDCA significantly increased final BW and average daily gain (ADG), decreased feed-to-gain (F:G) ratio and tended to reduce diarrhea incidence. In addition, CDCA increased the villus height-to-crypt depth (V:C) ratio, elevated goblet cell numbers and the expression of tight junction proteins, suggesting the enhancement of intestinal barrier function. As an emulsifier, CDCA increased jejunal lipase activity and the mRNA expression of pancreatic lipases. CDCA supplementation also altered the serum metabolic profiles, including increasing the levels of indole 3-acetic acid, N'-formylkynurenine and theobromine that were beneficial for gut health. Moreover, the relative abundance of 2 beneficial gut bacteria, Prevotella 9 and Prevotellaceae TCG-001, were increased, whereas the relative abundance of a harmful bacteria, Dorea, was decreased in the gut of weaned piglets supplemented with CDCA. Importantly, the altered serum metabolic profiles showed a strong correlation with the changed gut bacteria. In conclusion, CDCA improved the growth performance of weaned piglets by improving intestinal morphology and barrier function, and enhancing lipid digestion, accompanied by alterations of serum metabolic profiles, and changes in relative abundance of certain gut bacteria.

10.
J Agric Food Chem ; 68(45): 12631-12640, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33140642

RESUMO

Lauric acid (LA) has been implicated in the prevention/treatment of obesity. However, the role of LA in modulating an obesity-related female reproductive disorder remains largely unknown. Here, female mice were fed a control diet, high-fat diet (HFD), or HFD supplemented with 1% LA. The results demonstrated that the HFD-induced estrous cycle irregularity and the reduction of serum follicle-stimulating hormone (FSH) were alleviated by LA supplementation. In possible mechanisms, LA supplementation led to significant increase in serum lipid metabolites such as sphingomyelin and lysophosphatidylcholine containing LA (C12:0) and the improvement of glucose metabolism in mice fed HFD. Moreover, impaired body energy metabolism and weakened brown adipose tissue (BAT) thermogenesis of HFD-fed mice were improved by LA supplementation. Together, these findings showed that LA supplementation alleviated HFD-induced estrous cycle irregularity, possibly associated with altered serum lipid metabolites, improved glucose metabolism, body energy metabolism, and BAT thermogenesis. These findings suggested the potential application of LA in alleviating obesity and its related reproductive disorders.


Assuntos
Ácidos Láuricos/administração & dosagem , Distúrbios Menstruais/tratamento farmacológico , Termogênese/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ciclo Menstrual/efeitos dos fármacos , Distúrbios Menstruais/metabolismo , Distúrbios Menstruais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Food Funct ; 11(4): 3657-3667, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32296804

RESUMO

This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.


Assuntos
Intestinos/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Células Cultivadas/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Isomerismo , Ácidos Linoleicos Conjugados/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
Stem Cell Res Ther ; 9(1): 55, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523193

RESUMO

BACKGROUND: Although many reports show that various kinds of stem cells have the ability to recover function in premature ovarian aging, few studies have looked at stem cell treatment of natural ovarian aging (NOA). We designed this experimental study to investigate whether human amniotic mesenchymal stem cells (hAMSCs) retain the ability to restore ovarian function, and how hAMSCs work in this process. METHODS: To build the NOA mouse model, the mice were fed for 12-14 months normally with young fertile female mice as the normal control group (3-5 months old). Hematoxylin and eosin staining permitted follicle counting and showed the ovarian tissue structure. An enzyme-linked immunosorbent assay was used to detect the serum levels of the sex hormones estradiol (E2), anti-mullerian hormone (AMH), and follicle-stimulating hormone (FSH). The proliferation rate and marker expression level of human ovarian granule cells (hGCs) (ki67, AMH, FSH receptor, FOXL2, and CYP19A1) were measured by flow cytometry (FACS). Cytokines (growth factors) were measured by a protein antibody array methodology. After hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were co-cultured with hGCs, proliferation (ki67) and apoptosis (Annexin V) levels were analyzed by FACS. After HGF and EGF were injected into the ovaries of natural aging mice, the total follicle numbers and hormone levels were tested. RESULTS: After the hAMSCs were transplanted into the NOA mouse model, the hAMSCs exerted a therapeutic activity on mouse ovarian function by improving the follicle numbers over four stages. In addition, our results showed that hAMSCs significantly promoted the proliferation rate and marker expression level of ovarian granular cells that were from NOA patients. Meanwhile, we found that the secretion level of EGF and HGF from hAMSCs was higher than other growth factors. A growth factor combination (HGF with EGF) improved the proliferation rate and inhibited the apoptosis rate more powerfully after a co-culture with hGCs, and total follicle numbers and hormone levels were elevated to a normal level after the growth factor combination was injected into the ovaries of the NOA mouse model. CONCLUSIONS: These findings provide insight into the notion that hAMSCs play an integral role in resistance to NOA. Furthermore, our present study demonstrates that a growth factor combination derived from hAMSCs plays a central role in inhibiting ovarian aging. Therefore, we suggest that hAMSCs improve ovarian function in natural aging by secreting HGF and EGF.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Insuficiência Ovariana Primária/terapia , Adulto , Âmnio/citologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovário/crescimento & desenvolvimento , Ovário/fisiologia
13.
J Agric Food Chem ; 64(40): 7530-7539, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27648945

RESUMO

Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.


Assuntos
Colesterol/metabolismo , Metilação de DNA , Fígado/efeitos dos fármacos , Metionina/análogos & derivados , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Acetil-CoA C-Acetiltransferase/genética , Ração Animal , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Colesterol/genética , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina N-Metiltransferase/genética , Hidroximetilglutaril-CoA Redutases/genética , Fígado/metabolismo , Metionina/genética , Metionina/metabolismo , Metionina/farmacologia , Regiões Promotoras Genéticas , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa