Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(7): e2305396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797184

RESUMO

Efficient manufacture of electroactive vertically-oriented nanosheets with enhanced electrolyte mass diffusion and strong interfacial redox dynamics is critical for realizing high energy density of miniature supercapacitor (SC), but still challenging. Herein, microfluidic droplet printing is developed to controllably construct vertically-oriented graphene/ZIF-67 hetero-microsphere (VAGS/ZIF-67), where the ZIF-67 is coordinately grown on vertically-oriented graphene framework via Co─O─C bonds. The VAGS/ZIF-67 shows ordered porous channel, high electroactivity and strong interfacial interaction, providing rapid electrolyte diffusion dynamics and high faradaic capacitance in KOH solution (1674 F g-1 , 1004 C g-1 ), which are verified by computational fluid dynamics (CFD) and density functional theory (DFT). Moreover, the VAGS/ZIF-67 based SC exhibits large energy density (100 Wh kg-1 ), excellent durability (10 000 cycles and high/low temperature), and robust power-supply applications in portable electronics.

2.
Small ; 16(6): e1906357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913575

RESUMO

Multiphase microfluidics enables an alternative approach with many possibilities in studying, analyzing, and manufacturing functional materials due to its numerous benefits over macroscale methods, such as its ultimate controllability, stability, heat and mass transfer capacity, etc. In addition to its immense potential in biomedical applications, multiphase microfluidics also offers new opportunities in various industrial practices including extraction, catalysis loading, and fabrication of ultralight materials. Herein, aiming to give preliminary guidance for researchers from different backgrounds, a comprehensive overview of the formation mechanism, fabrication methods, and emerging applications of multiphase microfluidics using different systems is provided. Finally, major challenges facing the field are illustrated while discussing potential prospects for future work.

3.
ACS Appl Mater Interfaces ; 16(28): 37028-37040, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963006

RESUMO

Shape-anisotropic hydrogel microparticles have attracted considerable attention for drug-delivery applications. Particularly, nonspherical hydrogel microcarriers with enhanced adhesive and circulatory abilities have demonstrated value in gastrointestinal drug administration. Herein, inspired by the structures of natural suckers, we demonstrate an ionic polymerization-based production of calcium (Ca)-alginate microparticles with tunable shapes from Janus emulsion for the first time. Monodispersed Janus droplets composed of sodium alginate and nongelable segments were generated using a coflow droplet generator. The interfacial curvatures, sizes, and production frequencies of Janus droplets can be flexibly controlled by varying the flow conditions and surfactant concentrations in the multiphase system. Janus droplets were ionically solidified on a chip, and hydrogel beads of different shapes were obtained. The in vitro and in vivo adhesion abilities of the hydrogel beads to the mouse colon were investigated. The anisotropic beads showed prominent adhesive properties compared with the spherical particles owing to their sticky hydrogel components and unique shapes. Finally, a novel computational fluid dynamics and discrete element method (CFD-DEM) coupling simulation was used to evaluate particle migration and contact forces theoretically. This review presents a simple strategy to synthesize Ca-alginate particles with tunable structures that could be ideal materials for constructing gastrointestinal drug delivery systems.

4.
Adv Mater ; 36(35): e2405109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38845131

RESUMO

Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering.


Assuntos
Emulsões , Microgéis , Água , Água/química , Microgéis/química , Emulsões/química , Transição de Fase , Materiais Biocompatíveis/química , Linfócitos T/citologia , Animais , Reagentes de Ligações Cruzadas/química , Separação de Fases
5.
ACS Appl Mater Interfaces ; 15(19): 22915-22928, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155948

RESUMO

Ideal joint wound dressings should not only promote wound healing and have good mechanical properties including stretchability and adhesion but also possess functions such as sterilization or motion monitoring. The multiple characteristic requirements have greatly limited the material's alternative, resulting in research on functional joint wound dressings falling far short of market demand. Therefore, low-cost, comprehensive designs need to be developed. Herein, inspired by the spiral arteries in the endometrium, alginate-based helical fibers were introduced into polyacrylamide/gelatin (PAM-Gel) to obtain composite polymer membranes, realizing a combination of both mechanical and functional properties. Large scale (100 m) and high-throughput (10 times higher than literature) fabrication of helical microfibers were first achieved, ensuring the low cost of fiber preparation. The composite film had adequate stretchability (>300% strain), adhesion strength (14 kPa), high transparency, and good biocompatibility. The helical fibers could be easily functionalized without affecting the mechanical properties of the dressings, thus broadening the range of materials available for joint dressings. After different treatments of the helical fibers, controlled drug release and joint motion monitoring were realized. Therefore, this helical microfiber composite membrane design achieved low-cost preparation, good mechanical properties, and functionalities including healing promotion, drug release, and motion monitoring ability, demonstrating application potential.


Assuntos
Adesivos , Cicatrização , Feminino , Humanos , Bandagens , Polímeros , Hidrogéis
6.
ACS Appl Mater Interfaces ; 13(49): 59392-59399, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851622

RESUMO

Due to the unique spiral geometry, different functional helical fibers are fabricated to perform vital tasks, including cargo transportation, medical treatment, cell manipulation, and so on. Although microfluidic techniques are widely used to fabricate helical fibers, the problems of channel blockage and spinning instability have not been well solved, which limits the mass preparation and practical application of spiral microfibers. In addition, the spinning mechanism is simply limited to liquid rope coiling, which has little impact on the design of microfluidic devices. Here, new types of microfluidic devices, which were easy to make and exhibited excellent spiral spinning performance, were designed. It was found that adding a sleeve layer outside the inner core needle in a coaxial microfluidic device could effectively promote the stable formation of helical microfibers. This novel microchannel could fabricate helical microfibers of more than 100 m in length continuously at one time with almost no blockage or deformation, and the key parameters of the fibers could be precisely adjusted. Combined with micro-particle image velocimetry (micro-PIV) measurements, it was confirmed that the improvement in the spinning performances was mainly attributed to the emergence of a focusing flow in the presence of the sleeve layer. After loading magnetic nanoparticles, the helical microfibers exhibited excellent motion manipulation capabilities, which showed great potential for drug delivery, cargo transportation, clogging removal, etc. This new design not only realized the high-throughput fabrication of helical microfibers but also provided deeper insights into the underlying mechanisms of spiral generation and new ideas for the design of microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa