Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474322

RESUMO

Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.


Assuntos
Encefalomielite Autoimune Experimental , Neurite Óptica , Ratos , Animais , Camundongos , Neurite Óptica/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Nervo Óptico/metabolismo , Hipóxia/metabolismo , Fatores Imunológicos/metabolismo , Camundongos Endogâmicos C57BL
2.
Neuropathol Appl Neurobiol ; 49(1): e12868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520661

RESUMO

AIMS: The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS: Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS: Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS: Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Camundongos , Esclerose Múltipla/metabolismo , Medula Espinal/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Oxigênio/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
4.
Glia ; 69(8): 2023-2036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942402

RESUMO

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Neurônios , Oligodendroglia , Gravidez , Infecção por Zika virus/complicações
5.
Ann Neurol ; 88(1): 123-136, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293054

RESUMO

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Nimodipina/uso terapêutico , Medula Espinal/patologia , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/patologia , Ratos , Ratos Sprague-Dawley
6.
Glia ; 67(3): 512-524, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578556

RESUMO

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Although it is the presenting symptom in many cases, the initial events are currently unknown. However, in the earliest stages of autoimmune optic neuritis in rats, pathological changes are already apparent such as microglial activation and disturbances in myelin ultrastructure of the optic nerves. αB-crystallin is a heat-shock protein induced in cells undergoing cellular stress and has been reported to be up-regulated in both multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Therefore, we wished to investigate the timing and localization of its expression in autoimmune optic neuritis. Although loss of oligodendrocytes was not observed until the later disease stages accompanying immune cell infiltration and demyelination, an increase in oligodendrocyte αB-crystallin was observed during the preclinical stages. This was most pronounced within the optic nerve head and was associated with areas of IgG deposition. Since treatment of isolated oligodendrocytes with sera from myelin oligodendrocyte glycoprotein (MOG)-immunized animals induced an increase in αB-crystallin expression, as did passive transfer of sera from MOG-immunized animals to unimmunized recipients, we propose that the partially permeable blood-brain barrier of the optic nerve head may present an opportunity for blood-borne components such as anti-MOG antibodies to come into contact with oligodendrocytes as one of the earliest events in disease development.


Assuntos
Doenças Autoimunes/patologia , Encefalomielite Autoimune Experimental/patologia , Nervo Óptico/patologia , Neurite Óptica/patologia , Animais , Doenças Autoimunes/imunologia , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Feminino , Oligodendroglia/imunologia , Oligodendroglia/patologia , Nervo Óptico/imunologia , Neurite Óptica/imunologia , Ratos , Ratos Sprague-Dawley
7.
Acta Neuropathol ; 134(1): 15-34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386765

RESUMO

Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2+ monocytes are required for both. Depleting CCR2+ monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2+ monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.


Assuntos
Córtex Cerebral/imunologia , Encefalomielite Autoimune Experimental/imunologia , Monócitos/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Callithrix , Córtex Cerebral/patologia , Estudos de Coortes , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Meninges/imunologia , Meninges/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Monócitos/patologia , Esclerose Múltipla/patologia , Distribuição Aleatória , Receptores CCR2/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia
8.
J Immunol ; 194(11): 5077-84, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25895531

RESUMO

B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Inflamação Neurogênica/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/patologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem
9.
Brain ; 138(Pt 7): 1875-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907862

RESUMO

Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.


Assuntos
Astrócitos/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Transdução de Sinais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
10.
Immunol Cell Biol ; 93(2): 167-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348934

RESUMO

Chemokine-directed leukocyte migration is a critical component of all innate and adaptive immune responses. The atypical chemokine receptor ACKR2 is expressed by lymphatic endothelial cells and scavenges pro-inflammatory CC chemokines to indirectly subdue leukocyte migration. This contributes to the resolution of acute inflammatory responses in vivo. ACKR2 is also universally expressed by innate-like B cells, suppressing their responsiveness to the non-ACKR2 ligand CXCL13, and controlling their distribution in vivo. The role of ACKR2 in autoimmunity remains relatively unexplored, although Ackr2 deficiency reportedly lessens the clinical symptoms of experimental autoimmune encephalomyelitis induced by immunization with encephalogenic peptide (MOG(35-55)). This was attributed to poor T-cell priming stemming from the defective departure of dendritic cells from the site of immunization. However, we report here that Ackr2-deficient mice, on two separate genetic backgrounds, are not less susceptible to autoimmunity induced by immunization, and in some cases develop enhanced clinical symptoms. Moreover, ACKR2 deficiency does not suppress T-cell priming in response to encephalogenic peptide (MOG(35-55)), and responses to protein antigen (collagen or MOG(1-125)) are characterized by elevated interleukin-17 production. Interestingly, after immunization with protein, but not peptide, antigen, Ackr2 deficiency was also associated with an increase in lymph node B cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that enhances T helper type 17 (Th17) cell development and survival. Thus, Ackr2 deficiency does not suppress autoreactive T-cell priming and autoimmune pathology, but can enhance T-cell polarization toward Th17 cells and increase the abundance of GM-CSF(+) B cells in lymph nodes draining the site of immunization.


Assuntos
Autoantígenos/imunologia , Colágeno/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Quimiocinas/metabolismo , Células Th17/imunologia , Animais , Anticorpos/imunologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Imunização , Interleucina-17/biossíntese , Articulações/imunologia , Articulações/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia , Receptores de Quimiocinas/deficiência , Regulação para Cima
11.
J Neuroinflammation ; 12: 194, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511327

RESUMO

BACKGROUND: Ιn multiple sclerosis (MS), axonal damage leads to permanent neurological disabilities and the spreading of the autoimmune response to axonal antigens is implicated in disease progression. Experimental autoimmune encephalomyelitis (EAE) provides an animal model that mimics MS. Using different EAE models, we investigated the pathophysiological basis of epitope spreading to neurofascin, a protein localized at the node of Ranvier and its regulation by non-MHC genes. METHODS: We used two different EAE models in DA rat; one which is induced with myelin oligodendrocyte glycoprotein (MOG) which leads to disease characterized by profound demyelination, and the second which is induced with myelin basic protein (MBP) peptide 63-88 which results in severe central nervous system (CNS) inflammation but little or no demyelination. We determined anti-neurofascin antibody levels during the course of disease. Furthermore, the anti-neurofascin IgG response was correlated with clinical parameters in 333 (DAxPVG.1AV1) x DA rats on which we performed linkage analysis to determine if epitope spreading to neurofascin was affected by non-MHC genes. RESULTS: Spreading of the antibody response to neurofascin occurred in demyelinating MOG-induced EAE but not in EAE induced with MBP peptide 63-88. Anti-neurofascin IgG levels correlated with disease severity in (DAxPVG.1AV1) x DA rats, and a genomic region on chromosome 3 was found to influence this response. CONCLUSIONS: Inter-molecular epitope spreading to neurofascin correlates with disease severity in MOG-EAE is dependent on extensive demyelination and is influenced by non-MHC genes. The findings presented here may shed light on factors involved in the severity of MS and its genetics.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Animais , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Epitopos , Feminino , Imunoglobulina G/imunologia , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Proteína Básica da Mielina/farmacologia , Peptídeos/farmacologia , Ratos
12.
Ann Neurol ; 74(6): 815-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038279

RESUMO

OBJECTIVE: To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS: EAE was induced in Dark Agouti rats by immunization with recombinant myelin oligodendrocyte glycoprotein and adjuvant. Tissue hypoxia was assessed in vivo using 2 independent methods: an immunohistochemical probe administered intravenously, and insertion of a physical, oxygen-sensitive probe into the spinal cord. Indirect markers of tissue hypoxia (eg, expression of hypoxia-inducible factor-1α [HIF-1α], vessel diameter, and number of vessels) were also assessed. The effects of brief (1 hour) and continued (7 days) normobaric oxygen treatment on function were evaluated in conjunction with other treatments, namely administration of a mitochondrially targeted antioxidant (MitoQ) and inhibition of inducible nitric oxide synthase (1400W). RESULTS: Observed neurological deficits were quantitatively, temporally, and spatially correlated with spinal white and gray matter hypoxia. The tissue expression of HIF-1α also correlated with loss of function. Spinal microvessels became enlarged during the hypoxic period, and their number increased at relapse. Notably, oxygen administration significantly restored function within 1 hour, with improvement persisting at least 1 week with continuous oxygen treatment. MitoQ and 1400W also caused a small but significant improvement. INTERPRETATION: We present chemical, physical, immunohistochemical, and therapeutic evidence that functional deficits caused by neuroinflammation can arise from tissue hypoxia, consistent with an energy crisis in inflamed central nervous system tissue. The neurological deficit was closely correlated with spinal white and gray matter hypoxia. This realization may indicate new avenues for therapy of neuroinflammatory diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Hipóxia/fisiopatologia , Inflamação/fisiopatologia , Oxigênio/farmacologia , Doenças da Medula Espinal/fisiopatologia , Amidinas/farmacologia , Animais , Benzilaminas/farmacologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hipóxia/induzido quimicamente , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Micronutrientes/farmacologia , Compostos Organofosforados/farmacologia , Oxigênio/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Índice de Gravidade de Doença , Método Simples-Cego , Doenças da Medula Espinal/induzido quimicamente , Doenças da Medula Espinal/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
13.
J Exp Med ; 204(10): 2363-72, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17846150

RESUMO

Axonal injury is considered the major cause of disability in patients with multiple sclerosis (MS), but the underlying effector mechanisms are poorly understood. Starting with a proteomics-based approach, we identified neurofascin-specific autoantibodies in patients with MS. These autoantibodies recognize the native form of the extracellular domains of both neurofascin 186 (NF186), a neuronal protein concentrated in myelinated fibers at nodes of Ranvier, and NF155, the oligodendrocyte-specific isoform of neurofascin. Our in vitro studies with hippocampal slice cultures indicate that neurofascin antibodies inhibit axonal conduction in a complement-dependent manner. To evaluate whether circulating antineurofascin antibodies mediate a pathogenic effect in vivo, we cotransferred these antibodies with myelin oligodendrocyte glycoprotein-specific encephalitogenic T cells to mimic the inflammatory pathology of MS and breach the blood-brain barrier. In this animal model, antibodies to neurofascin selectively targeted nodes of Ranvier, resulting in deposition of complement, axonal injury, and disease exacerbation. Collectively, these results identify a novel mechanism of immune-mediated axonal injury that can contribute to axonal pathology in MS.


Assuntos
Autoanticorpos/imunologia , Axônios/imunologia , Axônios/patologia , Moléculas de Adesão Celular/imunologia , Fatores de Crescimento Neural/imunologia , Animais , Autoantígenos/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Eletrofisiologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Células HeLa , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Ratos
14.
Eur J Immunol ; 42(7): 1804-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22585447

RESUMO

Interleukin (IL)-33, a member of the IL-1 cytokine family, is an important modulator of the immune system associated with several immune-mediated disorders. High levels of IL-33 are expressed by the central nervous system (CNS) suggesting a potential role of IL-33 in autoimmune CNS diseases. We have investigated the expression and function of IL-33 in the development of experimental autoimmune encephalomyelitis (EAE) in mice. We report here that IL-33 and its receptor ST2 (IL-33Rα) are highly expressed in spinal cord tissue, and ST2 expression is markedly increased in the spinal cords of mice with EAE. Furthermore, ST2-deficient (ST2(-/-) ) mice developed exacerbated EAE compared with wild-type (WT) mice while WT, but not ST2(-/-) EAE mice treated with IL-33 developed significantly attenuated disease. IL-33-treated mice had reduced levels of IL-17 and IFN-γ but produced increased amounts of IL-5 and IL-13. Lymph node and splenic macrophages of IL-33-treated mice showed polarization toward an alternatively activated macrophage (M2) phenotype with significantly increased frequency of MR(+) PD-L2(+) cells. Importantly, adoptive transfer of these IL-33-treated macrophages attenuated EAE development. Our data therefore demonstrate that IL-33 plays a therapeutic role in autoimmune CNS disease by switching a predominantly pathogenic Th17/Th1 response to Th2 activity, and by polarization of anti-inflammatory M2 macrophages.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon gama/antagonistas & inibidores , Interleucina-17/antagonistas & inibidores , Interleucinas/imunologia , Macrófagos/imunologia , Transferência Adotiva , Animais , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-33 , Interleucinas/biossíntese , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/imunologia , Medula Espinal/imunologia
15.
Brain ; 135(Pt 6): 1819-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561643

RESUMO

Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments.


Assuntos
Axônios/metabolismo , Imunoglobulina G/farmacologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Adulto , Idoso , Animais , Axônios/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/terapia , Bainha de Mielina/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Troca Plasmática , Ratos , Medula Espinal/citologia , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-37429715

RESUMO

BACKGROUND AND OBJECTIVES: Mechanisms of visual impairment in aquaporin 4 antibody (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disorder (MOGAD) are incompletely understood. The respective impact of optic nerve demyelination and primary and secondary retinal neurodegeneration are yet to be investigated in animal models. METHODS: Active MOG35-55 experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6Jrj mice, and monoclonal MOG-IgG (8-18C5, murine), recombinant AQP4-IgG (rAb-53, human), or isotype-matched control IgG (Iso-IgG, human) was administered 10 days postimmunization. Mobility impairment was scored daily. Visual acuity by optomotor reflex and ganglion cell complex thickness (GCC, 3 innermost retinal layers) by optical coherence tomography (OCT) were longitudinally assessed. Histopathology of optic nerve and retina was investigated during presymptomatic, acute, and chronic disease phases for immune cells, demyelination, complement deposition, natural killer (NK) cell, AQP4, and astrocyte involvement, retinal ganglion cells (RGCs), and Müller cell activation. Groups were compared by nonparametric tests with a p value <0.05 indicating statistical significance. RESULTS: Visual acuity decreased from baseline to chronic phase in MOG-IgG (mean ± standard error of the mean: 0.54 ± 0.01 to 0.46 ± 0.02 cycles/degree, p < 0.05) and AQP4-IgG EAE (0.54 ± 0.01 to 0.43 ± 0.02, cycles/degree, p < 0.05). Immune cell infiltration of optic nerves started in presymptomatic AQP4-IgG, but not in MOG-IgG EAE (5.85 ± 2.26 vs 0.13 ± 0.10 macrophages/region of interest [ROI] and 1.88 ± 0.63 vs 0.15 ± 0.06 T cells/ROI, both p < 0.05). Few NK cells, no complement deposition, and stable glial fibrillary acid protein and AQP4 fluorescence intensity characterized all EAE optic nerves. Lower GCC thickness (Spearman correlation coefficient r = -0.44, p < 0.05) and RGC counts (r = -0.47, p < 0.05) correlated with higher mobility impairment. RGCs decreased from presymptomatic to chronic disease phase in MOG-IgG (1,705 ± 51 vs 1,412 ± 45, p < 0.05) and AQP4-IgG EAE (1,758 ± 14 vs 1,526 ± 48, p < 0.01). Müller cell activation was not observed in either model. DISCUSSION: In a multimodal longitudinal characterization of visual outcome in animal models of MOGAD and NMOSD, differential retinal injury and optic nerve involvement were not conclusively clarified. Yet optic nerve inflammation was earlier in AQP4-IgG-associated pathophysiology. Retinal atrophy determined by GCC thickness (OCT) and RGC counts correlating with mobility impairment in the chronic phase of MOG-IgG and AQP4-IgG EAE may serve as a generalizable marker of neurodegeneration.


Assuntos
Encefalomielite Autoimune Experimental , Neuromielite Óptica , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico , Autoanticorpos , Imunoglobulina G , Anticorpos Monoclonais
17.
Mult Scler Relat Disord ; 78: 104892, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499337

RESUMO

Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) or aquaporin 4 (AQP4-IgG) are associated with CNS inflammatory disorders. We directly compared MOG35-55-induced experimental autoimmune encephalomyelitis exacerbated by MOG- and AQP4-IgG (versus isotype IgG, Iso-IgG). Disease severity was highest after MOG-IgG application. MOG- and AQP4-IgG administration increased disease incidence compared to Iso-IgG. Inflammatory lesions appeared earlier and with distinct localizations after AQP4-IgG administration. AQP4 intensity was more reduced after AQP4- than MOG-IgG administration at acute disease phase. The described models are suitable for comparative analyses of pathological features associated with MOG- and AQP4-IgG and the investigation of therapeutic interventions.

18.
J Neurosci ; 31(37): 13028-38, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917786

RESUMO

Astrocytes undergo major phenotypic changes in response to injury and disease that directly influence repair in the CNS, but the mechanisms involved are poorly understood. Previously, we have shown that neurosphere-derived rat astrocytes plated on poly-L-lysine (PLL-astrocytes) support myelination in dissociated rat spinal cord cultures (myelinating cultures). It is hypothesized that astrocyte reactivity can affect myelination, so we have exploited this culture system to ascertain how two distinct astrocyte phenotypes influence myelination. Astrocytes plated on tenascin C (TnC-astrocytes), a method to induce quiescence, resulted in less myelinated fibers in the myelinating cultures when compared with PLL-astrocytes. In contrast, treatment of myelinating cultures plated on PLL-astrocytes with ciliary neurotrophic factor (CNTF), a cytokine known to induce an activated astrocyte phenotype, promoted myelination. CNTF could also reverse the effect of quiescent astrocytes on myelination. A combination of microarray gene expression analysis and quantitative real-time PCR identified CXCL10 as a potential candidate for the reduction in myelination in cultures on TnC-astrocytes. The effect of TnC-astrocytes on myelination was eliminated by neutralizing CXCL10 antibodies. Conversely, CXCL10 protein inhibited myelination on PLL-astrocytes. Furthermore, CXCL10 treatment of purified oligodendrocyte precursor cells did not affect proliferation, differentiation, or process extension compared with untreated controls, suggesting a role in glial/axonal ensheathment. These data demonstrate a direct correlation of astrocyte phenotypes with their ability to support myelination. This observation has important implications with respect to the development of therapeutic strategies to promote CNS remyelination in demyelinating diseases.


Assuntos
Astrócitos/metabolismo , Quimiocina CXCL10/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Células Cultivadas , Fator Neurotrófico Ciliar/fisiologia , Meios de Cultura , Feminino , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fenótipo , Polilisina/fisiologia , Análise Serial de Proteínas/métodos , Ratos , Ratos Sprague-Dawley
19.
Mult Scler ; 18(3): 286-98, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21952095

RESUMO

BACKGROUND AND OBJECTIVES: Since CD8(+) T cells may be important in the pathogenesis of multiple sclerosis (MS), we examined their role in the DA rat experimental autoimmune encephalomyelitis (EAE) model induced by immunization with recombinant myelin oligodendrocyte glycoprotein (rMOG). METHODS: The inflammatory infiltrate in the spinal cord of affected animals was assessed by histology, electrophysiology and flow cytometry during the course of the disease (the first peak, remission and the second peak). The proportions of activated/memory effector (CD8(+)CD44(+)) and putative suppressor (CD8(+)CD28(-), CD8(+)CD25(high)) CD8(+) T cells in the draining lymph nodes were determined. To explore the role of CD8(+) T cells, similar experiments were performed in CD8(+) T cell depleted rats, before, during and after the first peak of the disease. RESULTS: Throughout the disease, both CD4(+) T cells and macrophages/activated microglia outnumbered CD8(+) T cells within the spinal cord. The number of putative suppressor CD8(+) T cells increased significantly both during and after the first peak suggesting the induction of a regulatory CD8(+) T-cell response. However, antibody-mediated depletion of CD8(+) T cells before induction of the disease, or after the first peak, did not significantly alter the incidence, severity or course of rMOG-induced EAE. CONCLUSIONS: The findings suggest that CD8(+) T cells do not play a significant role in the pathogenesis or regulation of EAE induced by rMOG in DA rats. In this respect, rMOG-induced EAE is not an appropriate model for studying the role of CD8(+) T cells in MS.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Proteínas da Mielina/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Depleção Linfocítica , Esclerose Múltipla/etiologia , Glicoproteína Mielina-Oligodendrócito , Ratos , Medula Espinal/imunologia , Medula Espinal/patologia
20.
Proc Natl Acad Sci U S A ; 106(20): 8302-7, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416878

RESUMO

Gray matter pathology is increasingly recognized as an important feature of multiple sclerosis (MS), but the nature of the immune response that targets the gray matter is poorly understood. Starting with a proteomics approach, we identified contactin-2/transiently expressed axonal glycoprotein 1 (TAG-1) as a candidate autoantigen recognized by both autoantibodies and T helper (Th) 1/Th17 T cells in MS patients. Contactin-2 and its rat homologue, TAG-1, are expressed by various neuronal populations and sequestered in the juxtaparanodal domain of myelinated axons both at the axonal and myelin sides. The pathogenic significance of these autoimmune responses was then explored in experimental autoimmune encephalitis models in the rat. Adoptive transfer of TAG-1-specific T cells induced encephalitis characterized by a preferential inflammation of gray matter of the spinal cord and cortex. Cotransfer of TAG-1-specific T cells with a myelin oligodendrocyte glycoprotein-specific mAb generated focal perivascular demyelinating lesions in the cortex and extensive demyelination in spinal cord gray and white matter. This study identifies contactin-2 as an autoantigen targeted by T cells and autoantibodies in MS. Our findings suggest that a contactin-2-specific T-cell response contributes to the development of gray matter pathology.


Assuntos
Autoantígenos , Autoimunidade , Moléculas de Adesão Celular Neuronais/imunologia , Esclerose Múltipla/imunologia , Fibras Nervosas Amielínicas/patologia , Transferência Adotiva , Animais , Contactina 2 , Encefalomielite Autoimune Experimental/imunologia , Humanos , Esclerose Múltipla/etiologia , Ratos , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa