Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(10): 4111-4119, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417100

RESUMO

Multiplexed analysis in medical diagnostics is widely accepted as a more thorough and complete method compared to single-analyte detection. While analytical methods like polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) exist for multiplexed detection of biomarkers, they remain time-consuming and expensive. Lateral flow assays (LFAs) are an attractive option for point-of-care testing, and examples of multiplexed LFAs exist. However, these devices are limited by spatial resolution of test lines, large sample volume requirements, cross-reactivity, and poor sensitivity. Recent work has developed capillary-flow microfluidic ELISA platforms as a more sensitive alternative to LFAs; however, multiplexed detection on these types of devices has yet to be demonstrated. In the aftermath of the initial SARS-CoV-2 pandemic, the need for rapid, sensitive point-of-care devices has become ever clearer. Moving forward, devices that can distinguish between diseases with similar presenting symptoms would be the ideal home diagnostic. Here, the first example of a multiplexed capillary-flow immunoassay device for the simultaneous detection of multiple biomarkers is reported. From a single sample addition step, the reagents and washing steps required for two simultaneous ELISAs are delivered to spatially separated test strips. Visual results can be obtained in <15 min, and images captured with a smartphone can be analyzed for quantitative data. This device was used to distinguish between and quantify H1N1 hemagglutinin (HA) and SARS-CoV-2 nucleocapsid protein (N-protein). Using this device, analytical detection limits of 840 and 133 pg/mL were obtained for hemagglutinin and nucleocapsid protein, respectively. The presence of one target in the device did not increase the signal on the other test line, indicating no cross-reactivity between the assays. Additionally, simultaneous detection of both N-protein and HA was performed as well as simultaneous detection of N-protein and human C-reactive protein (CRP). Elevated levels of CRP in a patient infected with SARS-CoV-2 have been shown to correlate with more severe outcomes and a greater risk of death as well. To further expand on the simultaneous detection of two biomarkers, CRP and N-protein were detected simultaneously, and the presence of SARS-CoV-2 N-protein did not interfere with the detection of CRP when both targets were present in the sample.


Assuntos
Hemaglutininas , Vírus da Influenza A Subtipo H1N1 , Humanos , Imunoensaio/métodos , SARS-CoV-2 , Proteína C-Reativa/análise , Biomarcadores/análise , Proteínas do Nucleocapsídeo
2.
Chem Rev ; 121(19): 11835-11885, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34125526

RESUMO

Microfluidic paper-based analytical devices (µPADs) have garnered significant interest as a promising analytical platform in the past decade. Compared with traditional microfluidics, µPADs present unique advantages, such as easy fabrication using established patterning methods, economical cost, ability to drive and manipulate flow without equipment, and capability of storing reagents for various applications. This Review aims to provide a comprehensive review of the field, highlighting fabrication methods available to date with their respective advantages and drawbacks, device designs and modifications to accommodate different assay needs, detection strategies, and the growing applications of µPADs. Finally, we discuss how the field needs to continue moving forward to realize its full potential.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Bioensaio , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Papel
3.
Anal Chim Acta ; 1277: 341634, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604607

RESUMO

Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs. The Capillary-Driven Immunoassay (CaDI) device described in this work uses microfluidic channels and capillary action to passively automate the steps of a traditional well-plate ELISA for visual read out. This work builds on prior capillary-flow devices by further simplifying operation and use of colorimetric detection. Upon adding sample, an enzyme-conjugated secondary antibody, wash steps, and substrate are sequentially delivered to test and control lines on a nitrocellulose strip generating a colorimetric response. The end user can visually detect SARS-CoV-2 antigen in 15-20 min by naked eye, or results can be quantified using a smartphone and software such as ImageJ. An analytical detection limit of 83 PFU/mL for SARS-CoV-2 was determined for virus in buffer, and 222 PFU/mL for virus spiked into nasal swabs using image analysis, similar to the LODs determined by traditional well-plate ELISA. Additionally, a visual detection limit of 100 PFU/mL was determined in contrived nasal swab samples by polling 20 untrained end-users. While the CaDI device was used for detecting clinically relevant levels of SARS-CoV-2 in this study, the CaDI device can be easily adapted to other immunoassay applications by changing the reagents and antibodies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Imunoensaio , Ensaio de Imunoadsorção Enzimática , Anticorpos , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa