Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Tetrahedron Lett ; 772021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34393283

RESUMO

Small molecules that selectively bind to the pseudokinase JH2 domain over the JH1 kinase domain of JAK2 kinase are sought. Virtual screening led to the purchase of 17 compounds among which 9 were found to bind to V617F JAK2 JH2 with affinities of 40 - 300 µM in a fluorogenic assay. Ten analogues were then purchased yielding 9 additional active compounds. Aminoanilinyltriazine 22 was particularly notable as it shows no detectable binding to JAK2 JH1, and it has a 65-µM dissociation constant K d with V617F JAK2 JH2. A crystal structure for 22 in complex with wild-type JAK2 JH2 was obtained to elucidate the binding mode. Additional de novo design led to the synthesis of 19 analogues of 22 with the most potent being 33n with K d values of 2-3 µM for WT and V617F JAK2 JH2, and with 16-fold selectivity relative to binding with WT JAK2 JH1.

2.
ACS Med Chem Lett ; 13(5): 819-826, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586418

RESUMO

The Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain. We report here the evolution of a false virtual screen hit into a new JAK2 JH2 series. Optimization guided by computational modeling has yielded analogues with nanomolar affinity for the JAK2 JH2 domain and >100-fold selectivity for the JH2 domain over the JH1 domain. A crystal structure for one of the potent compounds bound to JAK2 JH2 clarifies the origins of the strong binding and selectivity. The compounds expand the platform for seeking molecules to regulate JAK2 signaling, including V617F JAK2 hyperactivation.

3.
ACS Med Chem Lett ; 13(11): 1819-1826, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385940

RESUMO

Probe molecules that covalently modify the JAK2 pseudokinase domain (JH2) are reported. Selective targeting of JH2 domains over the kinase (JH1) domains is a necessary feature for ligands intended to evaluate JH2 domains as therapeutic targets. The JH2 domains of three Janus kinases (JAK1, JAK2, and TYK2) possess a cysteine residue in the catalytic loop that does not occur in their JH1 domains. Starting from a non-selective kinase binding molecule, computer-aided design directed attachment of substituents terminating in acrylamide warheads to modify Cys675 of JAK2 JH2. Successful covalent attachment was demonstrated first through observation of enhanced binding with increasing incubation time in fluorescence polarization experiments. Covalent binding also increased selectivity to as much as ca. 30-fold for binding the JAK2 JH2 domain over the JH1 domain after a 20-h incubation. Covalency was confirmed through HPLC electrospray quadrupole time-of-flight HRMS experiments, which revealed the expected mass shifts.

4.
J Med Chem ; 65(12): 8380-8400, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35653642

RESUMO

JAK2 is a non-receptor tyrosine kinase that regulates hematopoiesis through the JAK-STAT pathway. The pseudokinase domain (JH2) is an important regulator of the activity of the kinase domain (JH1). V617F mutation in JH2 has been associated with the pathogenesis of various myeloproliferative neoplasms, but JAK2 JH2 has been poorly explored as a pharmacological target. In light of this, we aimed to develop JAK2 JH2 binders that could selectively target JH2 over JH1 and test their capacity to modulate JAK2 activity in cells. Toward this goal, we optimized a diaminotriazole lead compound into potent, selective, and cell-permeable JH2 binders leveraging computational design, synthesis, binding affinity measurements for the JH1, JH2 WT, and JH2 V617F domains, permeability measurements, crystallography, and cell assays. Optimized diaminotriazoles are capable of inhibiting STAT5 phosphorylation in both WT and V617F JAK2 in cells.


Assuntos
Janus Quinases , Transtornos Mieloproliferativos , Humanos , Janus Quinase 2/metabolismo , Janus Quinases/metabolismo , Ligantes , Mutação , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
5.
ACS Med Chem Lett ; 12(8): 1325-1332, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34408808

RESUMO

Non-covalent inhibitors of the main protease (Mpro) of SARS-CoV-2 having a pyridinone core were previously reported with IC50 values as low as 0.018 µM for inhibition of enzymatic activity and EC50 values as low as 0.8 µM for inhibition of viral replication in Vero E6 cells. The series has now been further advanced by consideration of placement of substituted five-membered-ring heterocycles in the S4 pocket of Mpro and N-methylation of a uracil ring. Free energy perturbation calculations provided guidance on the choice of the heterocycles, and protein crystallography confirmed the desired S4 placement. Here we report inhibitors with EC50 values as low as 0.080 µM, while remdesivir yields values of 0.5-2 µM in side-by-side testing with infectious SARS-CoV-2. A key factor in the improvement is enhanced cell permeability, as reflected in PAMPA measurements. Compounds 19 and 21 are particularly promising as potential therapies for COVID-19, featuring IC50 values of 0.044-0.061 µM, EC50 values of ca. 0.1 µM, good aqueous solubility, and no cytotoxicity.

6.
bioRxiv ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32869018

RESUMO

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (M pro ) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with M pro , 17 were chosen for evaluation in a kinetic assay for M pro inhibition. Remarkably 14 of the compounds at 100-µM concentration were found to reduce the enzymatic activity and 5 provided IC 50 values below 40 µM: manidipine (4.8 µM), boceprevir (5.4 µM), lercanidipine (16.2 µM), bedaquiline (18.7 µM), and efonidipine (38.5 µM). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1', and P2 pockets of M pro . Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.

7.
ACS Med Chem Lett ; 11(12): 2526-2533, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33324471

RESUMO

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with Mpro, 17 were chosen for evaluation in a kinetic assay for Mpro inhibition. Remarkably 14 of the compounds at 100-µM concentration were found to reduce the enzymatic activity and 5 provided IC50 values below 40 µM: manidipine (4.8 µM), boceprevir (5.4 µM), lercanidipine (16.2 µM), bedaquiline (18.7 µM), and efonidipine (38.5 µM). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1', and P2 pockets of Mpro. Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.

8.
J Med Chem ; 63(10): 5324-5340, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329617

RESUMO

Janus kinases (JAKs) are non-receptor tyrosine kinases that are essential components of the JAK-STAT signaling pathway. Associated aberrant signaling is responsible for many forms of cancer and disorders of the immune system. The present focus is on the discovery of molecules that may regulate the activity of JAK2 by selective binding to the JAK2 pseudokinase domain, JH2. Specifically, the Val617Phe mutation in JH2 stimulates the activity of the adjacent kinase domain (JH1) resulting in myeloproliferative disorders. Starting from a non-selective screening hit, we have achieved the goal of discovering molecules that preferentially bind to the ATP binding site in JH2 instead of JH1. We report the design and synthesis of the compounds and binding results for the JH1, JH2, and JH2 V617F domains, as well as five crystal structures for JH2 complexes. Testing with a selective and non-selective JH2 binder on the autophosphorylation of wild-type and V617F JAK2 is also contrasted.


Assuntos
Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Animais , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Células Sf9 , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa