Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 108(5): 893-902, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33948930

RESUMO

PREMISE: Long-term observations show that flowering phenology has shifted in many lineages in response to climate change. However, it remains unclear whether these results can be generalized to predict the presence, direction, or magnitude of responses in lineages for which we lack long time-series data. If phenological responses are phylogenetically conserved, we can extrapolate from species for which we have data to predict the responses of close relatives. While several studies have found that closely related species flower at similar times, fewer have evaluated whether phylogenetically proximal species respond to environmental change similarly. METHODS: We paired flowering time data from 3161 manually scored herbarium specimens of 72 species of grasses (Poaceae) with historical climate data and analyzed the phylogenetic signal and phylogenetic half-life of phenological sensitivity. We also ran these analyses on a subset of species showing statistically significant sensitivities, in order to assess the role of sampling bias on phylogenetic signal. RESULTS: Closely related grass species tend to flower at similar times, but flowering times respond to temperature changes in species-specific ways. We also show that only including species for which there is strong evidence of phenological shifts results in overestimating phylogenetic signal. CONCLUSIONS: In agreement with other recent studies, our results suggest caution in extrapolating from evidence of phylogenetic similarity to predicting shared responses in this ecologically relevant trait. Future work is needed to better understand the discrepancy between the phylogenetic signal in observed phenological shifts and absence of such signal in sensitivity.


Assuntos
Mudança Climática , Poaceae , Flores , Filogenia , Poaceae/genética , Estações do Ano , Temperatura
2.
Int J Biometeorol ; 64(5): 873-880, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32112132

RESUMO

Anthropogenic warming's effects on phenology across environmental and temporal gradients are well recognized. Long-term phenological monitoring data are often limited in duration and geographic scope, but recent efforts to digitize herbaria collections make it possible to reliably reconstruct historic flowering phenology across broad geographic scales and multiple species, lending to an increased understanding of community response to climate change. In this study, we examined collection dates (1901 to 2015) of 8540 flowering specimens from 39 native species in the Pacific Northwest (PNW) region of North America. We hypothesized that flowering phenology would be sensitive to temperature but that sensitivity would vary depending on blooming season and geographic range position. As expected, we found that early-season bloomers are more sensitive to temperature than later-season bloomers. Sensitivity to temperature was significantly greater at low elevations and in the maritime (western) portion of the PNW than at higher elevations and in the eastern interior, respectively. The elevational and longitudinal effects on flowering sensitivity reflect spring "arriving" earlier at low elevations and in the maritime portion of the PNW. These results demonstrate that phenological responses to warming vary substantially across climatically diverse regions, warranting careful and nuanced consideration of climate warming's effects on plant phenology.


Assuntos
Mudança Climática , Flores , América do Norte , Noroeste dos Estados Unidos , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa