Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791527

RESUMO

Macrophages are well known for their involvement in the biocompatibility, as well as biodistribution, of nano(bio)materials. Although there are a number of rodent cell lines, they may not fully recapitulate primary cell responses, particularly those of human cells. Isolation of tissue-resident macrophages from humans is difficult and may result in insufficient cells with which to determine the possible interaction with nano(bio)materials. Isolation of primary human monocytes and differentiation to monocyte-derived macrophages may provide a useful tool with which to further study these interactions. To that end, we developed a standard operating procedure for this differentiation, as part of the Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE) project, and used it to measure the secretion of bioactive molecules from M1 and M2 differentiated monocytes in response to model nano(bio)materials, following an initial assessment of pyrogenic contamination, which may confound potential observations. The SOP was deployed in two partner institutions with broadly similar results. The work presented here shows the utility of this assay but highlights the relevance of donor variability in responses to nano(bio)materials. Whilst donor variability can provide some logistical challenges to the application of such assays, this variability is much closer to the heterogeneous cells that are present in vivo, compared to homogeneous non-human cell lines.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Macrófagos , Monócitos , Fenótipo , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/citologia , Células Cultivadas
2.
Br J Clin Pharmacol ; 87(4): 2078-2088, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085781

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC90 . METHODS: A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS: The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. CONCLUSION: The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Reposicionamento de Medicamentos , Modelos Biológicos , Nitrocompostos/administração & dosagem , Tiazóis/administração & dosagem , Adulto , Antivirais/sangue , Antivirais/farmacocinética , COVID-19/sangue , Simulação por Computador , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Nitrocompostos/sangue , Nitrocompostos/farmacocinética , Reprodutibilidade dos Testes , Tiazóis/sangue , Tiazóis/farmacocinética , Distribuição Tecidual , Adulto Jovem
3.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513786

RESUMO

Recent insights into the immunostimulatory properties of nucleic acid nanoparticles (NANPs) have demonstrated that variations in the shape, size, and composition lead to distinct patterns in their immunostimulatory properties. While most of these studies have used a single lipid-based carrier to allow for NANPs' intracellular delivery, it is now apparent that the platform for delivery, which has historically been a hurdle for therapeutic nucleic acids, is an additional means to tailoring NANP immunorecognition. Here, the use of dendrimers for the delivery of NANPs is compared to the lipid-based platform and the differences in resulting cytokine induction are presented.


Assuntos
Citocinas/metabolismo , Portadores de Fármacos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química
4.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764386

RESUMO

Investigation of the potential for nanomaterials to generate immunogenic effects is a key aspect of a robust preclinical evaluation. In combination with physicochemical characterization, such assessments also provide context for how material attributes influence biological outcomes. Furthermore, appropriate models for these assessments allow accurate in vitro to in vivo extrapolation, which is vital for the mechanistic understanding of nanomaterial action. Here we have assessed the immunogenic impact of a small panel of commercially available and in-house prepared nanomaterials on primary human peripheral blood mononuclear cells (PBMCs). A diethylaminoethyl-dextran (DEAE-dex) functionalized superparamagnetic iron oxide nanoparticle (SPION) generated detectable quantities of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), and IL-10, the only tested material to do so. The human leukemia monocytic cell line THP-1 was used to assess the potential for the nanomaterial panel to affect cellular oxidation-reduction (REDOX) via measurement of reactive oxygen species and reduced glutathione. Negatively charged sulfonate-functionalized polystyrene nanoparticles demonstrated a size-related trend for the inhibition of caspase-1, which was not observed for amine-functionalized polystyrene of similar sizes. Silica nanoparticles (310 nm) resulted in a 93% increase in proliferation compared to the untreated control (p < 0.01). No other nanomaterial treatments resulted in significant change from that of unstimulated PBMCs. Responses to the nanomaterials in the assays described demonstrate the utility of primary cells as ex vivo models for nanomaterial biological impact.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas Metálicas/química , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Nanoestruturas/química , Caspase 1/genética , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-10/genética , Interleucina-1alfa/genética , Leucócitos Mononucleares/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Oxirredução/efeitos dos fármacos , Poliestirenos/química , Poliestirenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Fator de Necrose Tumoral alfa/genética
5.
Molecules ; 24(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344834

RESUMO

In recent years, advances in pharmaceutical processing technologies have resulted in development of medicines that provide therapeutic pharmacokinetic exposure for a period ranging from weeks to months following a single parenteral administration. Benefits for adherence, dose and patient satisfaction have been witnessed across a range of indications from contraception to schizophrenia, with a range of long-acting medicines also in development for infectious diseases such as HIV. Existing drugs that have successfully been formulated as long-acting injectable formulations have long pharmacokinetic half-lives, low target plasma exposures, and low aqueous solubility. Of the statins that are clinically used currently, atorvastatin, rosuvastatin, and pitavastatin may have compatibility with this approach. The case for development of long-acting injectable statins is set out within this manuscript for this important class of life-saving drugs. An overview of some of the potential development and implementation challenges is also presented.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Fenômenos Químicos , Preparações de Ação Retardada/farmacocinética , Monitoramento de Medicamentos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Concentração Inibidora 50 , Nanopartículas/química , Solubilidade
6.
J Nanobiotechnology ; 16(1): 22, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544545

RESUMO

BACKGROUND: Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. RESULTS: Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. CONCLUSIONS: Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Portadores de Fármacos , Nanopartículas/química , Ativação Plaquetária/efeitos dos fármacos , Alcinos , Fármacos Anti-HIV/química , Benzoxazinas/química , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Ativação do Complemento/efeitos dos fármacos , Ciclopropanos , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Teste do Limulus , Lipopolissacarídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Álcool de Polivinil/química , Cultura Primária de Células , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vitamina E/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-27799216

RESUMO

Adequate concentrations of efavirenz in the central nervous system (CNS) are necessary to suppress viral replication, but high concentrations may increase the likelihood of CNS adverse drug reactions. The aim of this investigation was to evaluate the efavirenz distribution in the cerebrospinal fluid (CSF) and the brain by using a physiologically based pharmacokinetic (PBPK) simulation for comparison with rodent and human data. The efavirenz CNS distribution was calculated using a permeability-limited model on a virtual cohort of 100 patients receiving efavirenz (600 mg once daily). Simulation data were then compared with human data from the literature and with rodent data. Wistar rats were administered efavirenz (10 mg kg of body weight-1) once daily over 5 weeks. Plasma and brain tissue were collected for analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The median maximum concentrations of drug (Cmax) were predicted to be 3,184 ng ml-1 (interquartile range [IQR], 2,219 to 4,851 ng ml-1), 49.9 ng ml-1 (IQR, 36.6 to 69.7 ng ml-1), and 50,343 ng ml-1 (IQR, 38,351 to 65,799 ng ml-1) in plasma, CSF, and brain tissue, respectively, giving a tissue-to-plasma ratio of 15.8. Following 5 weeks of oral dosing of efavirenz (10 mg kg-1), the median plasma and brain tissue concentrations in rats were 69.7 ng ml-1 (IQR, 44.9 to 130.6 ng ml-1) and 702.9 ng ml-1 (IQR, 475.5 to 1,018.0 ng ml-1), respectively, and the median tissue-to-plasma ratio was 9.5 (IQR, 7.0 to 10.9). Although it is useful, measurement of CSF concentrations may give an underestimation of the penetration of antiretrovirals into the brain. The limitations associated with obtaining tissue biopsy specimens and paired plasma and CSF samples from patients make PBPK modeling an attractive tool for probing drug distribution.


Assuntos
Fármacos Anti-HIV/farmacocinética , Benzoxazinas/farmacocinética , Encéfalo/metabolismo , Modelos Estatísticos , Administração Oral , Alcinos , Animais , Fármacos Anti-HIV/sangue , Fármacos Anti-HIV/líquido cefalorraquidiano , Benzoxazinas/sangue , Benzoxazinas/líquido cefalorraquidiano , Simulação por Computador , Ciclopropanos , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Distribuição Tecidual
8.
Antimicrob Agents Chemother ; 57(11): 5612-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002095

RESUMO

Rilpivirine is a nonnucleoside reverse transcriptase inhibitor approved for treatment of HIV-1 infection in antiretroviral-naive adult patients. Potential interactions with drug transporters have not been fully investigated. Transport by and inhibition of drug transporters by rilpivirine were analyzed to further understand the mechanisms governing rilpivirine exposure and determine the potential for transporter-mediated drug-drug interactions. The ability of rilpivirine to inhibit or be transported by ABCB1 was determined using ABCB1-overexpressing CEMVBL100 cells and Caco-2 cell monolayers. The Xenopus laevis oocyte heterologous protein expression system was used to clarify if rilpivirine was either transported by or inhibited the function of influx transporters SLCO1A2, SLCO1B1, SLCO1B3, SLC22A2, SLC22A6, and SLC22A8. The ability of rilpivirine to inhibit or be transported by SLC22A1 was determined using SLC22A1-expressing KCL22 cells. Rilpivirine showed higher accumulation in SLC22A1-overexpressing KCL22 cells than control cells (27% increase, P = 0.03) and inhibited the functionality of SLC22A1 and SLC22A2 transport with 50% inhibitory concentrations (IC50s) of 28.5 µM and 5.13 µM, respectively. Inhibition of ABCB1-mediated digoxin transport was determined for rilpivirine, which inhibited digoxin transport in the B-to-A direction with an IC50 of 4.48 µM. The maximum rilpivirine concentration in plasma in patients following a standard 25-mg dosing regimen is around 0.43 µM, lower than that necessary to substantially inhibit ABCB1, SLC22A1, or SLC22A2 in vitro. However, these data indicate that SLC22A1 may contribute to variability in rilpivirine exposure and that interactions of rilpivirine with substrates of SLC22A1, SLC22A2, or ABCB1 may be possible.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Nitrilas/farmacologia , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Digoxina/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica , HIV-1/química , HIV-1/enzimologia , Humanos , Cinética , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico , Rilpivirina , Transfecção , Xenopus laevis
9.
Stem Cells Int ; 2023: 7397819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705699

RESUMO

Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.

10.
Biomed Pharmacother ; 159: 114191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623449

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent cells showing promise in pre-clinical studies and currently used in many clinical trials. The regenerative potential of MSCs is mediated, at least in part, by direct and indirect immunomodulatory processes. However, the mechanism of action is not fully understood yet, and there are still concerns about possible undesired negative effects associated with the administration of living cells. In this study, we (i) compare the long-term fate and safety of umbilical cord (UC-)MSCs administered to immunocompetent and immunocompromised (severe combined immunodeficient (SCID) and non-obese diabetic (NOD)/SCID) animals, and (ii) investigate the immunological response of the host to the administered cells. Intravenous administration of firefly luciferase expressing UC-MSCs revealed that the cells get trapped in the lungs of both immunocompetent and immunocompromised animals, with > 95% of the cells disappearing within 72 h after administration. In 27% of the SCID and 45% of the NOD/SCID, a small fraction of the cells lived up to day 14 but in most cases they all disappeared earlier. One NOD/SCID mouse showed a weak signal up to day 31. Immunocompetent mice displayed elevated percentages of neutrophils in the lungs, the blood, and the spleen 2 h after the administration of the cells. The concentration of neutrophil chemoattractants (MCP1, CCL7, Gro-α and IP-10) were also increased in the plasma of the animals 2 h after the administration of the MSCs. Our results suggest that although the UC-MSCs are short-lived in mice, they still result in an immunological response that might contribute to a therapeutic effect.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Cordão Umbilical , Sistema Imunitário , Células-Tronco Mesenquimais/fisiologia
11.
Biomed Pharmacother ; 163: 114841, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167727

RESUMO

Immunocompatibility issues related to nano(bio)materials, particularly liposomal formulations, involving activation of the complement system have been relatively well described however, they highlight the importance of preclinical evaluation of such interactions. These complement-mediated hypersensitivity reactions, in which basophils are implicated, are associated with complement activation-related pseudoallergy (CARPA). Ex vivo investigation of such events using primary basophils is technically challenging due to the relatively limited number of circulating basophils in peripheral blood. In the current work, the KU812 cell line has been applied as an in vitro model for basophil activation to investigate CARPA-related responses following exposure to test materials obtained from the REFINE consortium. To that end, we developed a standard operating procedure measuring a panel of cell-surface markers indicative of basophilic activation. Two laboratories performed the assays, demonstrating a clear difference in responses between liposomal and polymeric nano(bio)materials, while interlaboratory comparison of the standard operating procedure demonstrated reproducibility in results, between the two facilities. These results suggest the potential to use this protocol as a screening method for such responses however, validation using primary basophils is now warranted.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade , Humanos , Reprodutibilidade dos Testes , Ativação do Complemento , Lipossomos , Proteínas do Sistema Complemento
12.
Biomed Pharmacother ; 167: 115624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783151

RESUMO

Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Cordão Umbilical , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos
13.
Mucosal Immunol ; 16(6): 776-787, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37574128

RESUMO

Young age and high vitamin D plasma levels have been associated with lower SARS-CoV-2 infection risk and favourable disease outcomes. This study investigated mechanisms associated with differential responses to SARS-CoV-2 across age groups and effects of vitamin D. Nasal epithelia were collected from healthy children and adults and cultured for four weeks at the air-liquid interface with and without vitamin D. Gene expression and DNA methylation were investigated. Surface protein expression was confirmed by immunofluorescence while vitamin D receptor recruitment to the DNA was analysed through chromatin immunoprecipitation. HEp-2 cells were used for protein co-immunoprecipitation and luciferase reporter assays. Compared to children, airway epithelia from adults show higher viral RNA recovery following infection. This was associated with higher ANPEP/CD13, reduced type I interferon expression, and differential DNA methylation. In cells from adults, exposure to vitamin D reduced TTLL-12 expression, a negative regulator of the interferon response. This was mediated by vitamin D receptor recruitment to TTLL12, where it instructs DNA methylation through DNA methyltransferase 1. This study links age-dependent differential expression of CD13 and type I interferon to variable infection of upper airway epithelia. Furthermore, it provides molecular evidence for vitamin D reducing viral replication by inhibiting TTLL-12.


Assuntos
COVID-19 , Interferon Tipo I , Adulto , Criança , Humanos , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , SARS-CoV-2/metabolismo , Vitaminas , DNA
14.
Pharmaceutics ; 15(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37514020

RESUMO

Long-acting injectable (LAI) formulations promise to deliver patient benefits by overcoming issues associated with non-adherence. A preclinical assessment of semi-solid prodrug nanoparticle (SSPN) LAI formulations of emtricitabine (FTC) is reported here. Pharmacokinetics over 28 days were assessed in Wistar rats, New Zealand white rabbits, and Balb/C mice following intramuscular injection. Two lead formulations were assessed for the prevention of an HIV infection in NSG-cmah-/- humanised mice to ensure antiviral activities were as anticipated according to the pharmacokinetics. Cmax was reached by 12, 48, and 24 h in rats, rabbits, and mice, respectively. Plasma concentrations were below the limit of detection (2 ng/mL) by 21 days in rats and rabbits, and 28 days in mice. Mice treated with SSPN formulations demonstrated undetectable viral loads (700 copies/mL detection limit), and HIV RNA remained undetectable 28 days post-infection in plasma, spleen, lung, and liver. The in vivo data presented here demonstrate that the combined prodrug/SSPN approach can provide a dramatically extended pharmacokinetic half-life across multiple preclinical species. Species differences in renal clearance of FTC mean that longer exposures are likely to be achievable in humans than in preclinical models.

15.
Pharmacogenet Genomics ; 22(1): 10-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22082652

RESUMO

BACKGROUND: Nevirapine exhibits marked interpatient variability in pharmacokinetics. CYP2B6 activity and demographic factors are important, but there are a few data on drug transporters for nevirapine. ABCC10 (MRP7) is an efflux transporter highly expressed in liver, intestine, and peripheral blood cells. We investigated whether nevirapine is a substrate for ABCC10 and whether genetic variants contribute to variability in nevirapine plasma concentrations. METHODS: Accumulation of nevirapine was assessed in parental and ABCC10-transfected HEK293 cells (HEK293-ABCC10), CD4+ cells, and monocyte-derived macrophages from healthy volunteers (n=8). ABCC10 small interfering RNA studies were also conducted. DNA samples with paired plasma drug concentrations were available from 163 HIV-infected patients receiving nevirapine-containing regimens. Sequenom was used to screen 14 single nucleotide polymorphisms in ABCC10. Linear regression models were used to identify factors independently associated with nevirapine plasma concentration. RESULTS: Nevirapine accumulation was 37% lower in HEK293-ABCC10 cells compared with parental HEK293 cells (P=0.02), and this was reversed by cepharanthine (an ABCC10 inhibitor). After small interfering RNA knockdown of ABCC10, there was an increase in accumulation of nevirapine in CD4 cells (32%; P=0.03) and monocyte-derived macrophages (38%; P=0.04). Marked differences in the haplotype structure of ABCC10 was observed between White and Black patients in the cohort. In Whites, an exonic single nucleotide polymorphism (rs2125739) was significantly associated with nevirapine plasma concentration (P=0.02). Multivariate regression analysis identified carriage of a composite genotype of ABCC10 rs2125739 and CYP2B6 516G>T (P=0.001), time post dose (P=0.01) and BMI (P=0.07) to be independently associated with nevirapine plasma concentrations. CONCLUSION: Nevirapine is a substrate for ABCC10 and genetic variants influence its plasma concentrations. ABCC10 in lymphocytes and macrophages may also contribute to variability in intracellular permeation of nevirapine. Further studies are required to determine the clinical implications of these findings.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Biomarcadores Farmacológicos/sangue , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nevirapina/sangue , Polimorfismo de Nucleotídeo Único/genética , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzilisoquinolinas/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Modelos Lineares , Macrófagos/metabolismo , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Nevirapina/farmacocinética , Nevirapina/uso terapêutico , RNA Interferente Pequeno/genética
16.
J Infect Dis ; 204(1): 145-53, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628669

RESUMO

BACKGROUND: Tenofovir (TFV) causes kidney tubular dysfunction (KTD) in some patients, but the mechanism is poorly understood. Genetic variants in TFV transporters are implicated; we explored whether ABCC10 transports TFV and whether ABCC10 single-nucleotide polymorphisms (SNPs) are associated with KTD. METHODS: TFV accumulation was assessed in parental and ABCC10-transfected HEK293 cells (HEK293-ABCC10), CD4(+) cells and monocyte-derived macrophages (MDMs). Substrate specificity was confirmed by cepharanthine (ABCC10 inhibitor) and small interfering RNA (siRNA) studies. Fourteen SNPs in ABCC10 were genotyped in human immunodeficiency virus-positive patients with KTD (n = 19) or without KTD (controls; n = 96). SNP and haplotype analysis was performed using Haploview. RESULTS: TFV accumulation was significantly lower in HEK293-ABCC10 cell lines than in parental HEK293 cells (35% lower; P = .02); this was reversed by cepharanthine. siRNA knockdown of ABCC10 resulted in increased accumulation of TFV in CD4(+) cells (18%; P = .04) and MDMs (25%; P = .04). Two ABCC10 SNPs (rs9349256: odds ratio [OR], 2.3; P = .02; rs2125739, OR, 2.0; P = .05) and their haplotype (OR, 2.1; P = .05) were significantly associated with KTD. rs9349256 was associated with urine phosphorus wasting (P = .02) and ß2 microglobulinuria (P = .04). CONCLUSIONS: TFV is a substrate for ABCC10, and genetic variability within the ABCC10 gene may influence TFV renal tubular transport and contribute to the development of KTD. These results need to be replicated in other cohorts.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/efeitos adversos , Nefropatias/induzido quimicamente , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Organofosfonatos/efeitos adversos , Polimorfismo de Nucleotídeo Único , Adenina/administração & dosagem , Adenina/efeitos adversos , Fármacos Anti-HIV/administração & dosagem , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Rim/fisiologia , Nefropatias/genética , Túbulos Renais/fisiologia , Masculino , Organofosfonatos/administração & dosagem , Tenofovir
17.
Drug Deliv Transl Res ; 12(9): 2225-2242, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35838879

RESUMO

Nanoparticles including nanomedicines are known to be recognised by and interact with the immune system. As these interactions may result in adverse effects, for safety evaluation, the presence of such interactions needs to be investigated. Nanomedicines in particular should not unintendedly interact with the immune system, since patient's exposure is not minimised as in the case of 'environmental' nanoparticles, and repeated exposure may be required. NLRP3 inflammasome activation and dendritic cell (DC) maturation are two types of immune mechanisms known to be affected by nanoparticles including nanomedicines. NLRP3 inflammasome activation results in production of the pro-inflammatory cytokines IL-1ß and IL-18, as well as a specific type of cell death, pyroptosis. Moreover, chronic NLRP3 inflammasome activation has been related to several chronic diseases. Upon maturation, DC activate primary T cells; interference with this process may result in inappropriate activation and skewing of the adaptive immune response. Here, we evaluated the effect of two nanomedicines, representing nanostructured lipid carriers and polymers, on these two assays. Moreover, with a view to possible future standardisation and regulatory application, these assays were subject to an inter-laboratory comparison study using common SOPs. One laboratory performed three independent NLRP3 inflammasome activation experiments, while the other performed a single experiment. Two laboratories each performed three independent DC maturation experiments. While the nanostructured lipid carrier only showed marginal effects, the polymers showed major cytotoxicity. No evidence for inflammasome activation or DC maturation was demonstrated. Intra- and inter-laboratory comparison showed clearly reproducible results.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Dendríticas , Humanos , Inflamassomos/metabolismo , Lipídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanomedicina , Polímeros
18.
Biomed Pharmacother ; 150: 112999, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35461087

RESUMO

SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 µg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 µg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Trifosfato de Adenosina , Alcinos/uso terapêutico , Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Ciclopropanos , Metabolismo Energético , Glucose/uso terapêutico , Transportador de Glucose Tipo 1/genética , Infecções por HIV/tratamento farmacológico , Humanos , Lopinavir/farmacologia , Ritonavir
19.
Pharmaceutics ; 14(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432660

RESUMO

Lipidic nanoparticles (LNP), particularly liposomes, have been proven to be a successful and versatile platform for intracellular drug delivery for decades. Whilst primarily developed for small molecule delivery, liposomes have recently undergone a renaissance due to their success in vaccination strategies, delivering nucleic acids, in the COVID-19 pandemic. As such, liposomes are increasingly being investigated for the delivery of nucleic acids, beyond mRNA, as non-viral gene delivery vectors. Although not generally considered toxic, liposomes are increasingly shown to not be immunologically inert, which may have advantages in vaccine applications but may limit their use in other conditions where immunological responses may lead to adverse events, particularly those associated with complement activation. We sought to assess a small panel of liposomes varying in a number of physico-chemical characteristics associated with complement activation and inflammatory responses, and examine how basophil-like cells may respond to them. Basophils, as well as other cell types, are involved in the anaphylactic responses to liposomes but are difficult to isolate in sufficient numbers to conduct large scale analysis. Here, we report the use of the human KU812 cell line as a surrogate for primary basophils. Multiple phenotypic markers of activation were assessed, as well as the release of histamine and inflammasome activity within the cells. We found that larger liposomes were more likely to result in KU812 activation, and that non-PEGylated liposomes were potent stimulators of inflammasome activity (four-fold greater IL-1ß secretion than untreated controls), and a lower ratio of cholesterol to lipid was also associated with greater IL-1ß secretion ([Cholesterol:DSPC ratio] 1:10; 0.35 pg/mL IL-1ß vs. 5:10; 0.1 pg/mL). Additionally, PEGylation appeared to be associated with direct KU812 activation. These results suggest possible mechanisms related to the consequences of complement activation that may be underpinned by basophilic cells, in addition to other immune cell types. Investigation of the mechanisms behind these responses, and their impact on use in vivo, are now warranted.

20.
Antimicrob Agents Chemother ; 55(2): 879-87, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078936

RESUMO

The identification of transporters of the HIV integrase inhibitor raltegravir could be a factor in an understanding of the pharmacokinetic-pharmacodynamic relationship and reported drug interactions of raltegravir. Here we determined whether raltegravir was a substrate for ABCB1 or the influx transporters SLCO1A2, SLCO1B1, SLCO1B3, SLC22A1, SLC22A6, SLC10A1, SLC15A1, and SLC15A2. Raltegravir transport by ABCB1 was studied with CEM, CEM(VBL100), and Caco-2 cells. Transport by uptake transporters was assessed by using a Xenopus laevis oocyte expression system, peripheral blood mononuclear cells, and primary renal cells. The kinetics of raltegravir transport and competition between raltegravir and tenofovir were also investigated using SLC22A6-expressing oocytes. Raltegravir was confirmed to be an ABCB1 substrate in CEM, CEM(VBL100), and Caco-2 cells. Raltegravir was also transported by SLC22A6 and SLC15A1 in oocyte expression systems but not by other transporters studied. The K(m) and V(max) for SLC22A6 transport were 150 µM and 36 pmol/oocyte/h, respectively. Tenofovir and raltegravir competed for SLC22A6 transport in a concentration-dependent manner. Raltegravir inhibited 1 µM tenofovir with a 50% inhibitory concentration (IC(50)) of 14.0 µM, and tenofovir inhibited 1 µM raltegravir with an IC(50) of 27.3 µM. Raltegravir concentrations were not altered by transporter inhibitors in peripheral blood mononuclear cells or primary renal cells. Raltegravir is a substrate for SLC22A6 and SLC15A1 in the oocyte expression system. However, transport was limited compared to endogenous controls, and these transporters are unlikely to have a great impact on raltegravir pharmacokinetics.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/metabolismo , Inibidores de Integrase de HIV/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Organofosfonatos/metabolismo , Pirrolidinonas/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Adenina/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Linhagem Celular , Interações Medicamentosas , Humanos , Rim/citologia , Rim/metabolismo , Leucócitos Mononucleares/metabolismo , Oócitos/metabolismo , Raltegravir Potássico , Especificidade por Substrato , Tenofovir , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa