Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 33(10): e17255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133599

RESUMO

Understanding how phenotypic divergence arises among natural populations remains one of the major goals in evolutionary biology. As part of competitive exclusion experiment conducted in 1971, 10 individuals of Italian wall lizard (Podarcis siculus (Rafinesque-Schmaltz, 1810)) were transplanted from Pod Kopiste Island to the nearby island of Pod Mrcaru (Adriatic Sea). Merely 35 years after the introduction, the newly established population on Pod Mrcaru Island had shifted their diet from predominantly insectivorous towards omnivorous and changed significantly in a range of morphological, behavioural, physiological and ecological characteristics. Here, we combine genomic and quantitative genetic approaches to determine the relative roles of genetic adaptation and phenotypic plasticity in driving this rapid phenotypic shift. Our results show genome-wide genetic differentiation between ancestral and transplanted population, with weak genetic erosion on Pod Mrcaru Island. Adaptive processes following the founder event are indicated by highly differentiated genomic loci associating with ecologically relevant phenotypic traits, and/or having a putatively adaptive role across multiple lizard populations. Diverged traits related to head size and shape or bite force showed moderate heritability in a crossing experiment, but between-population differences in these traits did not persist in a common garden environment. Our results confirm the existence of sufficient additive genetic variance for traits to evolve under selection while also demonstrating that phenotypic plasticity and/or genotype by environment interactions are the main drivers of population differentiation at this early evolutionary stage.


Assuntos
Efeito Fundador , Genética Populacional , Lagartos , Fenótipo , Animais , Lagartos/genética , Ilhas , Variação Genética , Itália , Adaptação Fisiológica/genética , Masculino
2.
Curr Zool ; 70(3): 361-370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39035752

RESUMO

Urbanization occurs at a global scale, imposing dramatic and abrupt environmental changes that lead to biodiversity loss. Yet, some animal species can handle these changes, and thrive in such artificial environments. One possible explanation is that urban individuals are equipped with better cognitive abilities, but most studies have focused on birds and mammals and yielded varied results. Reptiles have received much less attention, despite some lizard species being common city dwellers. The Italian wall lizard, Podarcis siculus, and the common wall lizard, Podarcis muralis, are two successful lizards in anthropogenic habitats that thrive in urban locations. To test for differences in a cognitive skill between urban and semi-natural environments, we investigated inhibitory control through a detour task in syntopic populations of the two species, across 249 lizards that were tested in partially artificial field settings. Sophisticated inhibitory control is considered essential for higher degrees of cognitive flexibility and other higher-level cognitive abilities. In this task, we confronted lizards with a transparent barrier, separating them from a desired shelter area that they could only reach by controlling their impulse to go straight and instead detour the barrier. We found no differences between lizards in urban and semi-natural environments, nor between species, but females overall performed better than males. Moreover, 48% of the lizards in our study did not perform a correct trial in any of the 5 trials, hinting at the difficulty of the task for these species. This study is among the first to address lizard cognition, through their inhibitory control, as a potential explanation for success in cities and highlights one should be careful with assuming that urban animals generally have enhanced cognitive performance, as it might be taxa, task, or condition dependent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa