Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864629

RESUMO

Introgressive hybridization is widespread in wild plants and has important consequences. However, frequent hybridization between species makes the estimation of the species' phylogeny challenging, and little is known about the genomic landscape of introgression as it results from complex interactions of multiple evolutionary processes. Here, we reconstructed the phylogeny of ten wild diploid strawberries with whole genome resequencing data and then investigated the influence of recombination rate variation on phylogeny and introgression. We found that genomic regions with low recombination showed reduced levels of incomplete lineage sorting and introgression, and concentrated phylogenetic signals, thus contributing to the most likely species tree of wild diploid strawberries. We revealed complex and widespread introgression across the genus Fragaria, with an average proportion of approximately 4.1% of the extant genome. Introgression tends to be retained in the regions with high recombination rates and low gene density. Furthermore, we identified four SLF genes under selective sweeps that may play potential roles in the possible regain of self-incompatibility by ancient introgression. Altogether, our study yielded novel insights into the evolutionary history and genomic characteristics of introgression in wild diploid strawberries and provides evidence for the role of introgression in plant mating system transitions.


Assuntos
Fragaria , Filogenia , Fragaria/genética , Diploide , Genoma , Hibridização Genética , Recombinação Genética
2.
Plant Biotechnol J ; 22(6): 1552-1565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184782

RESUMO

The strawberry genus, Fragaria, exhibits a wide range of sexual systems and natural ploidy variation. Nearly, all polyploid strawberry species exhibit separate sexes (dioecy). Research has identified the sex-determining sequences as roughly conserved but with repeatedly changed genomic locations across octoploid strawberries. However, it remains unclear whether tetraploid wild strawberries evolved dioecy independently or shared a common origin with octoploid strawberries. In this study, we investigated the sex determinants of F. moupinensis, a dioecious plant with heterogametic females (ZW). Utilizing a combination of haplotype-resolved genome sequencing of the female F. moupinensis, k-mer-based and coverage-based genome-wide association studies (GWAS), and transcriptomic analysis, we discovered a non-recombining, approximately 33.6 kb W-specific region on chromosome 2a. Within this region, only one candidate sex-determining gene (FmoAFT) was identified. Furthermore, an extensive resequencing of the entire Fragaria genus indicated that the W-specific region displays conservative female specificity across all tetraploid species. This observation suggests that dioecy evolved independently in tetraploid and octoploid strawberries. Moreover, employing virus-induced gene silencing (VIGS), we knocked down the expression of the FmoAFT homologue transcript in cultivated strawberries, revealing its potential role in promoting female functions during early carpel development. We also applied DNA affinity purification sequencing (DAP-seq) and yeast one-hybrid assays to identify potential direct targets of FmoAFT. These insights shed new light on the genetic basis and evolutionary history of sex determination in strawberries, thereby facilitating the formulation of strategies to manipulate sex determination in breeding programs.


Assuntos
Fragaria , Genoma de Planta , Estudo de Associação Genômica Ampla , Tetraploidia , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Genoma de Planta/genética , Cromossomos de Plantas/genética
3.
Syst Biol ; 71(1): 190-207, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33978764

RESUMO

Target enrichment is becoming increasingly popular for phylogenomic studies. Although baits for enrichment are typically designed to target single-copy genes, paralogs are often recovered with increased sequencing depth, sometimes from a significant proportion of loci, especially in groups experiencing whole-genome duplication (WGD) events. Common approaches for processing paralogs in target enrichment data sets include random selection, manual pruning, and mainly, the removal of entire genes that show any evidence of paralogy. These approaches are prone to errors in orthology inference or removing large numbers of genes. By removing entire genes, valuable information that could be used to detect and place WGD events is discarded. Here, we used an automated approach for orthology inference in a target enrichment data set of 68 species of Alchemilla s.l. (Rosaceae), a widely distributed clade of plants primarily from temperate climate regions. Previous molecular phylogenetic studies and chromosome numbers both suggested ancient WGDs in the group. However, both the phylogenetic location and putative parental lineages of these WGD events remain unknown. By taking paralogs into consideration and inferring orthologs from target enrichment data, we identified four nodes in the backbone of Alchemilla s.l. with an elevated proportion of gene duplication. Furthermore, using a gene-tree reconciliation approach, we established the autopolyploid origin of the entire Alchemilla s.l. and the nested allopolyploid origin of four major clades within the group. Here, we showed the utility of automated tree-based orthology inference methods, previously designed for genomic or transcriptomic data sets, to study complex scenarios of polyploidy and reticulate evolution from target enrichment data sets.[Alchemilla; allopolyploidy; autopolyploidy; gene tree discordance; orthology inference; paralogs; Rosaceae; target enrichment; whole genome duplication.].


Assuntos
Alchemilla , Rosaceae , Evolução Molecular , Duplicação Gênica , Filogenia , Poliploidia
4.
PLoS Biol ; 16(8): e2006062, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148831

RESUMO

Turnovers of sex-determining systems represent important diversifying forces across eukaryotes. Shifts in sex chromosomes-but conservation of the master sex-determining genes-characterize distantly related animal lineages. Yet in plants, in which separate sexes have evolved repeatedly and sex chromosomes are typically homomorphic, we do not know whether such translocations drive sex-chromosome turnovers within closely related taxonomic groups. This phenomenon can only be demonstrated by identifying sex-associated nucleotide sequences, still largely unknown in plants. The wild North American octoploid strawberries (Fragaria) exhibit separate sexes (dioecy) with homomorphic, female heterogametic (ZW) inheritance, yet sex maps to three different chromosomes in different taxa. To characterize these turnovers, we identified sequences unique to females and assembled their reads into contigs. For most octoploid Fragaria taxa, a short (13 kb) sequence was observed in all females and never in males, implicating it as the sex-determining region (SDR). This female-specific "SDR cassette" contains both a gene with a known role in fruit and pollen production and a novel retrogene absent on Z and autosomal chromosomes. Phylogenetic comparison of SDR cassettes revealed three clades and a history of repeated translocation. Remarkably, the translocations can be ordered temporally due to the capture of adjacent sequence with each successive move. The accumulation of the "souvenir" sequence-and the resultant expansion of the hemizygous SDR over time-could have been adaptive by locking genes into linkage with sex. Terminal inverted repeats at the insertion borders suggest a means of movement. To our knowledge, this is the first plant SDR shown to be translocated, and it suggests a new mechanism ("move-lock-grow") for expansion and diversification of incipient sex chromosomes.


Assuntos
Fragaria/genética , Células Germinativas Vegetais/fisiologia , Processos de Determinação Sexual/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Evolução Molecular , Fragaria/crescimento & desenvolvimento , Genes de Plantas/genética , Ligação Genética , Genoma de Planta/genética , Filogenia , Cromossomos Sexuais/genética , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos
5.
Am J Bot ; 107(2): 262-272, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31732972

RESUMO

PREMISE: Divergence in functional traits and adaptive responses to environmental change underlies the ecological advantage of polyploid plants in the wild. While established polyploids may benefit from combined outcomes of genome doubling, hybridization, and polyploidy-enabled adaptive evolution, whether genome doubling alone can drive ecological divergence or whether the outcome is genetically variable remains less clear. METHODS: Using synthetic, colchicine-induced, autotetraploid (4x) plants derived from self-pollinated diploid (2x) seeds, and their colchicine-treated but unconverted diploid (2x.nc) full sibs from two diploid wild strawberry taxa (Fragaria vesca subsp. vesca and F. vesca subsp. bracteata), we examined the effects of genome doubling on functional traits, heat stress tolerance, and fitness components across taxa and maternal families (i.e., genetic families) within taxa. RESULTS: Comparisons between 2x and 2x.nc plants indicated a negligible effect of colchicine treatment on functional traits. Genome doubling increased stomatal length and decreased stomatal density, specific leaf area, and leaf vein density, recapitulating patterns observed in wild polyploid Fragaria. Trichome density, heat stress tolerance, and relative growth rate were not significantly affected by genome doubling. Although clonal reproduction was reduced in response to genome doubling, this effect was strongly genetic-family dependent. CONCLUSIONS: The results suggest that genome doubling during incipient speciation alone can generate ecological divergence and variation among genetic lineages. This response potentially allows for rapid short-term evolutionary adaptation and fuels genomic diversity and independent origins of polyploidy.


Assuntos
Fragaria , Diploide , Duplicação Gênica , Genoma de Planta , Humanos , Poliploidia
6.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24919147

RESUMO

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Assuntos
Eucalyptus/genética , Genoma de Planta , Eucalyptus/classificação , Evolução Molecular , Variação Genética , Endogamia , Filogenia
7.
New Phytol ; 221(4): 2286-2297, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281801

RESUMO

Polyploidy, or whole-genome duplication often with hybridization, is common in eukaryotes and is thought to drive ecological and evolutionary success, especially in plants. The mechanisms of polyploid success in ecologically relevant contexts, however, remain largely unknown. We conducted an extensive test of functional trait divergence and plasticity in conferring polyploid fitness advantage in heterogeneous environments, by growing clonal replicates of a worldwide genotype collection of six allopolyploid and five diploid wild strawberry (Fragaria) taxa in three climatically different common gardens. Among leaf functional traits, we detected divergence in trait means but not plasticities between polyploids and diploids, suggesting that increased genomic redundancy in polyploids does not necessarily translate into greater trait plasticity in response to environmental change. Across the heterogeneous garden environments, however, polyploids exhibited fitness advantage, which was conferred by both trait means and adaptive trait plasticities, supporting a 'jack-and-master' hypothesis for polyploids. Our findings elucidate essential ecological mechanisms underlying polyploid adaptation to heterogeneous environments, and provide an important insight into the prevalence and persistence of polyploid plants.


Assuntos
Adaptação Fisiológica , Fragaria/genética , Poliploidia , Característica Quantitativa Herdável , Diploide , Oregon
8.
Mol Phylogenet Evol ; 139: 106534, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212081

RESUMO

Targeted genome sequencing approaches allow characterization of evolutionary relationships using a considerable number of nuclear genes and informative characters. However, most phylogenomic analyses only utilize single nucleotide polymorphisms (SNPs). Studies at the species level, especially in groups that have recently radiated, often recover low amounts of phylogenetically informative variation in coding regions, and require non-coding sequences, which are richer in indels, to resolve gene trees. Here, NGS-Indel Coder, a pipeline to detect and omit false positive indels inferred from assemblies of short read sequence data, was developed to resolve the relationships among and within major clades of the American milkweeds (Asclepias), which are the result of a rapid and recent evolutionary radiation, and whose phylogeny has been difficult to resolve. This pipeline was applied to a Hyb-Seq data set of 768 loci including targeted exons and flanking intron regions from 33 milkweed species. Robust species tree inference was improved by excluding small alignment partitions (<100 bp) that increased gene tree ambiguity and incongruence. To further investigate the robustness of indel coding, data sets that included small and large indels were explored, and species trees derived from concatenated loci versus coalescent methods based on gene trees were compared. The phylogeny of Asclepias obtained using nuclear data was well resolved, and phylogenetic information from indels improved resolution of specific nodes. The Temperate North American, Mexican Highland, and Incarnatae clades were well supported as monophyletic. Asclepias coulteri, which has been considered part of the Sonoran Desert clade based on plastome analyses, was placed as sister to all the other milkweed species studied here, rather than as a member of that clade. Two groups within the Temperate North American and Mexican clades were not resolved, and the inferred relationships strongly conflicted when comparing results based on data sets that did or did not include indel characters. This new pipeline represents a step forward in making maximal use of the information content in phylogenomic data sets.


Assuntos
Asclepias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL/genética , Filogenia , Animais , Sequência de Bases , Genes de Plantas , Loci Gênicos , Íntrons/genética
9.
New Phytol ; 218(4): 1668-1684, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604235

RESUMO

Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongruence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use sequence capture data and multiple species tree and species network approaches to resolve the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among sources of incongruence. We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clarify the relationships among the major groups of Lachemilla, and explored multiple sources of conflict between gene trees and species trees inferred with a plurality of approaches. All phylogenetic methods recovered the four major groups previously proposed for Lachemilla, but species tree methods recovered different topologies for relationships between these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely of ancient hybrid origin, representing one of the main sources of incongruence among the species trees. Additionally, we found evidence for a potential whole genome duplication event shared by Lachemilla and allied genera. Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolutionary history of the group. Also, we show the necessity to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups that show patterns of reticulation.


Assuntos
Genômica , Hibridização Genética , Filogenia , Poliploidia , Rosaceae/genética , Clima Tropical , Núcleo Celular/genética , Cloroplastos/genética , Bases de Dados Genéticas , Éxons/genética , Redes Reguladoras de Genes , Genes de Plantas , Modelos Genéticos , Recombinação Genética/genética , Especificidade da Espécie
10.
New Phytol ; 218(2): 762-773, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479722

RESUMO

Plants produce specialized metabolites for their defence. However, specialist herbivores adapt to these compounds and use them for their own benefit. Plants attacked predominantly by specialists may be under selection to reduce or eliminate production of co-opted chemicals: the defence de-escalation hypothesis. We studied the evolution of pyrrolizidine alkaloids (PAs) in Apocynaceae, larval host plants for PA-adapted butterflies (Danainae, milkweed and clearwing butterflies), to test if the evolutionary pattern is consistent with de-escalation. We used the first PA biosynthesis specific enzyme (homospermidine synthase, HSS) as tool for reconstructing PA evolution. We found hss orthologues in diverse Apocynaceae species, not all of them known to produce PAs. The phylogenetic analysis showed a monophyletic origin of the putative hss sequences early in the evolution of one Apocynaceae lineage (the APSA clade). We found an hss pseudogene in Asclepias syriaca, a species known to produce cardiac glycosides but no PAs, and four losses of an HSS amino acid motif. APSA clade species are significantly more likely to be Danainae larval host plants than expected if all Apocynaceae species were equally likely to be exploited. Our findings are consistent with PA de-escalation as an adaptive response to specialist attack.


Assuntos
Apocynaceae/metabolismo , Vias Biossintéticas , Evolução Molecular , Modelos Biológicos , Alcaloides de Pirrolizidina/metabolismo , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Animais , Apocynaceae/genética , Borboletas/fisiologia , DNA Complementar/genética , Genes de Plantas , Funções Verossimilhança , Filogenia , Pseudogenes
11.
Am J Bot ; 105(3): 514-524, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29693728

RESUMO

PREMISE OF THE STUDY: Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. METHODS: We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. KEY RESULTS: We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. CONCLUSIONS: Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection.


Assuntos
Asclepias/genética , Evolução Biológica , Fenótipo , Filogenia , Folhas de Planta , Tricomas , Ceras , Resistência à Doença/genética , Ecologia , Evolução Molecular , Genomas de Plastídeos , Herbivoria , Funções Verossimilhança , Modelos Genéticos , Transpiração Vegetal
12.
Am J Bot ; 105(5): 862-874, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29797560

RESUMO

PREMISE OF THE STUDY: Recurrent formation of polyploid taxa is a common observation in many plant groups. Haploid, cytoplasmic genomes like the plastid genome can be used to overcome the problem of homeologous genes and recombination in polyploid taxa. Fragaria (Rosaceae) contains several octo- and decaploid species. We use plastome sequences to infer the plastid ancestry of these taxa with special focus on the decaploid Fragaria cascadensis. METHODS: We used genome skimming of 96 polyploid Fragaria samples on a single Illumina HiSeq 3000 lane to obtain whole plastome sequences. These sequences were used for phylogenetic reconstructions and dating analyses. Ploidy of all samples was inferred with flow cytometry, and plastid inheritance was examined in a controlled cross of F. cascadensis. KEY RESULTS: The plastid genome phylogeny shows that only the octoploid F. chiloensis is monophyletic, all other polyploid taxa were supported to be para- or polyphyletic. The decaploid Fragaria cascadensis has biparental plastid inheritance and four different plastid donors. Diversification of the F. cascadensis clades occurred in the last 230,000 years. The southern part of its distribution range harbors considerably higher genetic diversity, suggestive of a potential refugium. CONCLUSIONS: Fragaria cascadensis had at least four independent origins from parents with different plastomes. In contrast, para- and polyphyletic taxa of the octoploid Fragaria species are best explained by incomplete lineage sorting and/or hybridization. Biogeographic patterns in F. cascadensis are probably a result of range shift during the last glacial maximum.


Assuntos
Fragaria/genética , Genoma de Planta , Genomas de Plastídeos , Filogenia , Poliploidia , Evolução Biológica , Oregon , Análise de Sequência de DNA , Washington
13.
Am J Bot ; 105(4): 711-725, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29683492

RESUMO

PREMISE OF THE STUDY: Both incomplete lineage sorting and reticulation have been proposed as causes of phylogenetic incongruence. Disentangling these factors may be most difficult in long-lived, wind-pollinated plants with large population sizes and weak reproductive barriers. METHODS: We used solution hybridization for targeted enrichment and massive parallel sequencing to characterize low-copy-number nuclear genes and high-copy-number plastomes (Hyb-Seq) in 74 individuals of Pinus subsection Australes, a group of ~30 New World pine species of exceptional ecological and economic importance. We inferred relationships using methods that account for both incomplete lineage sorting and reticulation. KEY RESULTS: Concatenation- and coalescent-based trees inferred from nuclear genes mainly agreed with one another, but they contradicted the plastid DNA tree in recovering the Attenuatae (the California closed-cone pines) and Oocarpae (the egg-cone pines of Mexico and Central America) as monophyletic and the Australes sensu stricto (the southern yellow pines) as paraphyletic to the Oocarpae. The plastid tree featured some relationships that were discordant with morphological and geographic evidence and species limits. Incorporating gene flow into the coalescent analyses better fit the data, but evidence supporting the hypothesis that hybridization explains the non-monophyly of the Attenuatae in the plastid tree was equivocal. CONCLUSIONS: Our analyses document cytonuclear discordance in Pinus subsection Australes. We attribute this discordance to ancient and recent introgression and present a phylogenetic hypothesis in which mostly hierarchical relationships are overlain by gene flow.


Assuntos
Pinus/genética , Fluxo Gênico , Genes de Plantas/genética , Marcadores Genéticos/genética , Hibridização Genética , Modelos Genéticos , Filogenia , Pinus/classificação , Alinhamento de Sequência
14.
BMC Evol Biol ; 17(1): 180, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778145

RESUMO

BACKGROUND: Hybridization is observed in many eukaryotic lineages and can lead to the formation of polyploid species. The study of hybridization and polyploidization faces challenges both in data generation and in accounting for population-level phenomena such as coalescence processes in phylogenetic analysis. Genus Fragaria is one example of a set of plant taxa in which a range of ploidy levels is observed across species, but phylogenetic origins are unknown. RESULTS: Here, using 20 diploid and polyploid Fragaria species, we combine approaches from NGS data analysis and phylogenetics to infer evolutionary origins of polyploid strawberries, taking into account coalescence processes. We generate haplotype sequences for 257 low-copy nuclear markers assembled from Illumina target capture sequence data. We then identify putative hybridization events by analyzing gene tree topologies, and further test predicted hybridizations in a coalescence framework. This approach confirms the allopolyploid ancestry of F. chiloensis and F. virginiana, and provides new allopolyploid ancestry hypotheses for F. iturupensis, F. moschata, and F. orientalis. Evidence of gene flow between diploids F. bucharica and F. vesca is also detected, suggesting that it might be appropriate to consider these groups as conspecifics. CONCLUSIONS: This study is one of the first in which target capture sequencing followed by computational deconvolution of individual haplotypes is used for tracing origins of polyploid taxa. The study also provides new perspectives on the evolutionary history of Fragaria.


Assuntos
Fragaria/genética , Haplótipos/genética , Poliploidia , Análise de Sequência de DNA/métodos , Sequência de Bases , Análise por Conglomerados , Evolução Molecular , Hibridização Genética , Modelos Genéticos , Filogenia , Especificidade da Espécie
15.
New Phytol ; 216(1): 279-290, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28771729

RESUMO

Disentangling the evolutionary histories of polyploids, especially those with high ploidies, can reveal fundamental processes in speciation. Despite occurring frequently during evolution, the origins of many extant polyploid plant species remain largely unknown. By integrating linkage mapping, polyploid phylogeny and sex-determining region (SDR) in a unified framework, we statistically evaluated evolutionary hypotheses concerning the origin of a recently recognized decaploid strawberry (Fragaria cascadensis). The maximum-likelihood phylogenies and topology tests across homeologous groups consistently rejected the seemingly parsimonious hypothesis of 'contemporary sympatric speciation' via hybridization between octoploid and diploid congeners. Instead, most chromosomes supported 'ancient hybrid speciation' between a maternal octoploid progenitor ancestral to extant octoploid strawberries and a paternal, extinct Fragaria iinumae-like diploid progenitor, probably in Beringia during the Pleistocene. The absence of a shared SDR between the decaploid and other Fragaria is also consistent with an older origin rather than a recent hybrid origin in situ. Our study reveals a long evolutionary history of the decaploid despite its recent discovery, and highlights the pitfalls of inferring polyploid origins from niche/range alone or combined with morphology. It can serve as an exemplary starting step towards building much-needed model systems of established polyploids that have been, and remain to be, recognized.


Assuntos
Evolução Molecular , Poliploidia , Simpatria/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Filogenia
16.
J Hered ; 108(7): 731-739, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29036451

RESUMO

With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR.


Assuntos
Cromossomos de Plantas/genética , Fragaria/genética , Cromossomos Sexuais/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Evolução Molecular , Ligação Genética , Fenótipo , Filogenia , Poliploidia , Locos de Características Quantitativas
17.
New Phytol ; 211(4): 1412-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27102236

RESUMO

Recombination in ancient, heteromorphic sex chromosomes is typically suppressed at the sex-determining region (SDR) and proportionally elevated in the pseudoautosomal region (PAR). However, little is known about recombination dynamics of young, homomorphic plant sex chromosomes. We examine male and female function in crosses and unrelated samples of the dioecious octoploid strawberry Fragaria chiloensis in order to map the small and recently evolved SDR controlling both traits and to examine recombination patterns on the incipient ZW chromosome. The SDR of this ZW system is located within a 280 kb window, in which the maternal recombination rate is lower than the paternal one. In contrast to the SDR, the maternal PAR recombination rate is much higher than the rates of the paternal PAR or autosomes, culminating in an elevated chromosome-wide rate. W-specific divergence is elevated within the SDR and a single polymorphism is observed in high species-wide linkage disequilibrium with sex. Selection for recombination suppression within the small SDR may be weak, but fluctuating sex ratios could favor elevated recombination in the PAR to remove deleterious mutations on the W. The recombination dynamics of this nascent sex chromosome with a modestly diverged SDR may be typical of other dioecious plants.


Assuntos
Cromossomos de Plantas/genética , Fragaria/genética , Recombinação Genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Genoma de Planta , Genótipo , Escore Lod , Fenótipo , Mapeamento Físico do Cromossomo
18.
Am J Bot ; 102(4): 544-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878088

RESUMO

PREMISE OF THE STUDY: Molecular phylogenies derived from all three plant genomes can provide insight into the evolutionary history of plant groups influenced by reticulation. We sought to reconstruct mitochondrial exome, chloroplast, and nuclear genome phylogenies for octoploid Fragaria and their diploid ancestors and to document patterns of incongruence between and within the cytoplasmic genomes and interpret these in the context of evolutionary origin of the octoploid strawberries. METHODS: Using a genome-skimming approach, we assembled chloroplast genomes and mitochondrial exomes, and we used the POLiMAPS method to assemble nuclear sequence for octoploid species and constructed phylogenies from all three genomes. We assessed incongruence between and within cytoplasmic genomes using topology-based phylogenetic incongruence tests. KEY RESULTS: The incongruent cytoplasmic genome phylogeny with respect to the placement of octoploids suggests potential breakage in linkage disequilibrium of cytoplasmic genomes during allopolyploid origin of the octoploids. Furthermore, a single mitochondrial chimeric gene with a putative role in cytoplasmic male sterility yields a phylogeny that is inconsistent with the rest of the mitochondrial genome but consistent with the chloroplast phylogeny, suggesting intracellular gene transfer between heteroplasmic mitochondria, possibly driven by selection to overcome the effects of mito-nuclear incompatibility in octoploid origins. CONCLUSIONS: This work expands on the current understanding of evolutionary history of the octoploid ancestors of cultivated strawberry. It demonstrates phylogenetic incongruence between cytoplasmic genomes in octoploids with respect to diploid ancestors, indicating breakage in linkage disequilibrium of cytoplasmic genomes. We discuss potential organism-level processes that may have contributed to the observed incongruence in Fragaria.


Assuntos
Fragaria/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Genoma de Planta , Núcleo Celular/genética , Evolução Molecular , Fragaria/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
19.
BMC Evol Biol ; 14: 67, 2014 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-24678701

RESUMO

BACKGROUND: As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. RESULTS: Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each "strategy" for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees estimated by the Concatenation, RTC, SMRT, STAR, and STEAC methods, and that in general are more balanced than those inferred by these other strategies. CONCLUSIONS: When constructing a species tree from a multilocus set of sequences, our observations provide a basis for interpreting differences in species tree estimates obtained via different approaches that have a two-stage structure in common, one step for gene tree estimation and a second step for species tree estimation. The methods explored here employ a number of distinct features of the data, and our analysis suggests that recovery of the same results from multiple methods that tend to differ in their patterns of inference can be a valuable tool for obtaining reliable estimates.


Assuntos
Filogenia , Pinus/classificação , Pinus/genética , Análise por Conglomerados , DNA de Plantas/genética , Tipagem de Sequências Multilocus , Estados Unidos
20.
Mol Phylogenet Evol ; 80: 169-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25109653

RESUMO

Crown clade Apocynaceae comprise seven primary lineages of lianas, shrubs, and herbs with a diversity of pollen aggregation morphologies including monads, tetrads, and pollinia, making them an ideal group for investigating the evolution and function of pollen packaging. Traditional molecular systematic approaches utilizing small amounts of sequence data have failed to resolve relationships along the spine of the crown clade, a likely ancient rapid radiation. The previous best estimate of the phylogeny was a five-way polytomy, leaving ambiguous the homology of aggregated pollen in two major lineages, the Periplocoideae, which possess pollen tetrads, and the milkweeds (Secamonoideae plus Asclepiadoideae), which possess pollinia. To assess whether greatly increased character sampling would resolve these relationships, a plastome sequence data matrix was assembled for 13 taxa of Apocynaceae, including nine newly generated complete plastomes, one partial new plastome, and three previously reported plastomes, collectively representing all primary crown clade lineages and outgroups. The effects of phylogenetic noise, long-branch attraction, and model selection (linked versus unlinked branch lengths among data partitions) were evaluated in a hypothesis-testing framework based on Shimodaira-Hasegawa tests. Discrimination among alternative crown clade resolutions was affected by all three factors. Exclusion of the noisiest alignment positions and topologies influenced by long-branch attraction resulted in a trichotomy along the spine of the crown clade consisting of Rhabdadenia+the Asian clade, Baisseeae+milkweeds, and Periplocoideae+the New World clade. Parsimony reconstruction on all optimal topologies after noise exclusion unambiguously supports parallel evolution of aggregated pollen in Periplocoideae (tetrads) and milkweeds (pollinia). Our phylogenomic approach has greatly advanced the resolution of one of the most perplexing radiations in Apocynaceae, providing the basis for study of convergent floral morphologies and their adaptive value.


Assuntos
Apocynaceae/classificação , Evolução Biológica , Genoma de Cloroplastos , Filogenia , Apocynaceae/genética , Teorema de Bayes , DNA de Plantas/genética , Funções Verossimilhança , Modelos Genéticos , Pólen/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa