RESUMO
We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16 components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription factor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that variants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We combine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is approximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve the accuracy of genomic selection.
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos/genética , Análise de Sequência de DNA , Cromatina/genética , Sequências Reguladoras de Ácido NucleicoRESUMO
BACKGROUND: Genome sequence variants affecting complex traits (quantitative trait loci, QTL) are enriched in functional regions of the genome, such as those marked by certain histone modifications. These variants are believed to influence gene expression. However, due to the linkage disequilibrium among nearby variants, pinpointing the precise location of QTL is challenging. We aimed to identify allele-specific binding (ASB) QTL (asbQTL) that cause variation in the level of histone modification, as measured by the height of peaks assayed by ChIP-seq (chromatin immunoprecipitation sequencing). We identified DNA sequences that predict the difference between alleles in ChIP-seq peak height in H3K4me3 and H3K27ac histone modifications in the mammary glands of cows. RESULTS: We used a gapped k-mer support vector machine, a novel best linear unbiased prediction model, and a multiple linear regression model that combines the other two approaches to predict variant impacts on peak height. For each method, a subset of 1000 sites with the highest magnitude of predicted ASB was considered as candidate asbQTL. The accuracy of this prediction was measured by the proportion where the predicted direction matched the observed direction. Prediction accuracy ranged between 0.59 and 0.74, suggesting that these 1000 sites are enriched for asbQTL. Using independent data, we investigated functional enrichment in the candidate asbQTL set and three control groups, including non-causal ASB sites, non-ASB variants under a peak, and SNPs (single nucleotide polymorphisms) not under a peak. For H3K4me3, a higher proportion of the candidate asbQTL were confirmed as ASB when compared to the non-causal ASB sites (P < 0.01). However, these candidate asbQTL did not enrich for the other annotations, including expression QTL (eQTL), allele-specific expression QTL (aseQTL) and sites conserved across mammals (P > 0.05). CONCLUSIONS: We identified putatively causal sites for asbQTL using the DNA sequence surrounding these sites. Our results suggest that many sites influencing histone modifications may not directly affect gene expression. However, it is important to acknowledge that distinguishing between putative causal ASB sites and other non-causal ASB sites in high linkage disequilibrium with the causal sites regarding their impact on gene expression may be challenging due to limitations in statistical power.
Assuntos
Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Histonas , Locos de Características Quantitativas , Animais , Bovinos/genética , Histonas/genética , Histonas/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Polimorfismo de Nucleotídeo Único , Código das Histonas , Desequilíbrio de Ligação , Anotação de Sequência Molecular , FemininoRESUMO
BACKGROUND: Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS: We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS: Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.
Assuntos
Lactação , Lactoferrina , Leite , Animais , Feminino , Haplótipos , Lactação/genética , Lactoferrina/genética , Lactoferrina/análise , Lactoferrina/metabolismo , Leite/química , Leite/metabolismo , BovinosRESUMO
Cerebellar hypoplasia is a heterogeneous neurological condition in which the cerebellum is smaller than usual or not completely developed. The condition can have genetic origins, with Mendelian-effect mutations described in several mammalian species. Here, we describe a genetic investigation of cerebellar hypoplasia in White Swiss Shepherd dogs, where two affected puppies were identified from a litter with a recent common ancestor on both sides of their pedigree. Whole genome sequencing was conducted for 10 dogs in this family, and filtering of these data based on a recessive transmission hypothesis highlighted five protein-altering candidate variants - including a frameshift-deletion of the Reelin (RELN) gene (p.Val947*). Given the status of RELN as a gene responsible for cerebellar hypoplasia in humans, sheep and mice, these data strongly suggest the loss-of-function variant as underlying these effects. This variant has not been found in other dog breeds nor in a cohort of European White Swiss Shepherds, suggesting a recent mutation event. This finding will support the genotyping of a more diverse sample of dogs, and should aid future management of the harmful allele through optimised mating schemes.
Assuntos
Doenças do Cão , Proteína Reelina , Animais , Cães , Humanos , Cerebelo/anormalidades , Doenças do Cão/genética , Mutação da Fase de Leitura , Mamíferos , Mutação , Deleção de Sequência , Suíça , Proteína Reelina/genéticaRESUMO
BACKGROUND: Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants. RESULTS: We assayed the histone modifications H3K4Me3, H3K4Me1 and H3K27ac and mRNA in the mammary gland of up to 400 animals. We identified QTL for peak height (histone QTL), exon expression (eeQTL), allele specific expression (aseQTL) and allele specific binding (asbQTL). By intersecting these results, we identify variants which may influence gene expression by altering regulatory regions of the genome, and may be causal variants for other traits. Lastly, we find that these variants are found in putative transcription factor binding sites, identifying a mechanism for the effect of many eQTL. CONCLUSIONS: We find that allele specific and traditional QTL analysis often identify the same genetic variants and provide evidence that many eQTL are regulatory variants which alter activity at regulatory regions of the bovine genome. Our work provides methodological and biological updates on how regulatory mechanisms interplay at multi-omics levels.
Assuntos
Código das Histonas , Multiômica , Bovinos/genética , Animais , Variação Genética , Expressão GênicaRESUMO
BACKGROUND: Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for recessive effects based on lactation traits. RESULTS: We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composition traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting dominance. CONCLUSIONS: We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield phenotypes acting as a better proxy of underlying biological disorders through presentation of a larger number of major recessive impacts.
Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Feminino , Lactação/genética , Leite , FenótipoRESUMO
BACKGROUND: Milk samples from 10,641 dairy cattle were screened by a mass spectrometry method for extreme concentrations of the A or B isoforms of the whey protein, ß-lactoglobulin (BLG), to identify causative genetic variation driving changes in BLG concentration. RESULTS: A cohort of cows, from a single sire family, was identified that produced milk containing a low concentration of the BLG B protein isoform. A genome-wide association study (GWAS) of BLG B protein isoform concentration in milk from AB heterozygous cows, detected a group of highly significant single nucleotide polymorphisms (SNPs) within or close to the BLG gene. Among these was a synonymous G/A variation at position + 78 bp in exon 1 of the BLG gene (chr11:103256256G > A). The effect of the A allele of this SNP (which we named B') on BLG expression was evaluated in a luciferase reporter assay in transfected CHO-K1 and MCF-7 cells. In both cell types, the presence of the B' allele in a plasmid containing the bovine BLG gene from -922 to + 898 bp (relative to the transcription initiation site) resulted in a 60% relative reduction in mRNA expression, compared to the plasmid containing the wild-type B sequence allele. Examination of a mammary RNAseq dataset (n = 391) identified 14 heterozygous carriers of the B' allele which were homozygous for the BLG B protein isoform (BB'). The level of expression of the BLG B' allele was 41.9 ± 1.0% of that of the wild-type BLG B allele. Milk samples from three cows, homozygous for the A allele at chr11:103,256,256 (B'B'), were analysed (HPLC) and showed BLG concentrations of 1.04, 1.26 and 1.83 g/L relative to a mean of 4.84 g/L in milk from 16 herd contemporaries of mixed (A and B) BLG genotypes. The mechanism by which B' downregulates milk BLG concentration remains to be determined. CONCLUSIONS: High-throughput screening and identification of outliers, enabled the discovery of a synonymous G > A mutation in exon 1 of the B allele of the BLG gene (B'), which reduced the milk concentration of ß-lactoglobulin B protein isoform, by more than 50%. Milk from cows carrying the B' allele is expected to have improved processing characteristics, particularly for cheese-making.
Assuntos
Lactoglobulinas , Leite , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla , Lactoglobulinas/análise , Leite/química , Isoformas de Proteínas/análiseRESUMO
Charcot-Marie-Tooth disease (CMT) is a hereditary sensory and motor peripheral neuropathy that is one of the most common inherited neurological diseases of humans and may be caused by mutations in a number of different genes. The subtype Charcot-Marie-Tooth disease type 4H (CMT4H) is caused by homozygous mutations in the FGD4 (FYVE, RhoGEF, and PH domain-containing 4) gene. A previous genome-wide association study involving 130,783 dairy cows found 6 novel variants, one of which was a homozygous splice site mutation in the FGD4 gene. Descendants of carriers were genotyped to identify 9 homozygous Holstein Friesian calves that were raised to maturity, of which 5 were euthanized and sampled for histopathology and electron microscopy at 2 and 2.5 years of age. Three control Holstein Friesian animals were raised with the calves and euthanized at the same time points. No macroscopic lesions consistent with CMT4H were seen at necropsy. Microscopically, peripheral nerves were hypercellular due to hyperplasia of S100-positive Schwann cells, and there was onion bulb formation, axonal degeneration with demyelination, and increased thickness of the endoneurium. On electron microscopy, decreased axonal density, onion bulb formations, myelin outfoldings, and increased numbers of mitochondria were present. These changes are consistent with those described in mouse models and humans with CMT4H, making these cattle a potential large animal model for CMT.
Assuntos
Doenças dos Bovinos , Doença de Charcot-Marie-Tooth , Animais , Bovinos , Doenças dos Bovinos/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/veterinária , Feminino , Estudo de Associação Genômica Ampla/veterinária , Proteínas dos Microfilamentos , MutaçãoRESUMO
Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids and individual milk proteins with those that had been measured directly using gas and liquid chromatography methods. The data used in this study was based on 2,005 milk samples collected from 706 Holstein-Friesian × Jersey animals that were managed in a seasonal, pasture-based dairy system, with milk samples collected across 2 consecutive seasons. Concentrations of fatty acids and protein fractions in milk samples were directly determined by gas chromatography and high-performance liquid chromatography, respectively. Models to predict each directly measured trait based on FT-MIR spectra were developed using partial least squares regression, with spectra from a random selection of half the cows used to train the models, and predictions for the remaining cows used as validation. Variance parameters for each trait and genetic correlations for each pair of measured/predicted traits were estimated from pedigree-based bivariate models using REML procedures. A genome-wide association study was undertaken using imputed whole-genome sequence, and quantitative trait loci (QTL) from directly measured traits were compared with QTL from the corresponding FT-MIR predicted traits. Cross-validation prediction accuracies based on partial least squares for individual and grouped fatty acids ranged from 0.18 to 0.65. Trait prediction accuracies in cross-validation for protein fractions were 0.53, 0.19, and 0.48 for α-casein, ß-casein, and κ-casein, 0.31 for α-lactalbumin, 0.68 for ß-lactoglobulin, and 0.36 for lactoferrin. Heritability estimates for directly measured traits ranged from 0.07 to 0.55 for fatty acids; and from 0.14 to 0.63 for individual milk proteins. For FT-MIR predicted traits, heritability estimates were mostly higher than for the corresponding measured traits, ranging from 0.14 to 0.46 for fatty acids, and from 0.30 to 0.70 for individual proteins. Genetic correlations between directly measured and FT-MIR predicted protein fractions were consistently above 0.75, with the exceptions of C18:0 and C18:3 cis-3, which had genetic correlations of 0.72 and 0.74, respectively. The GWAS identified trait QTL for fatty acids with likely candidates in the DGAT1, CCDC57, SCD, and GPAT4 genes. Notably, QTL for SCD were largely absent in the FT-MIR predicted traits, and QTL for GPAT4 were absent in directly measured traits. Similarly, for directly measured individual proteins, we identified QTL with likely candidates in the CSN1S1, CSN3, PAEP, and LTF genes, but the QTL for CSN3 and LTF were absent in the FT-MIR predicted traits. Our study indicates that genetic correlations between directly measured and FT-MIR predicted fatty acid and protein fractions are typically high, but that phenotypic variation in these traits may be underpinned by differing genetic architecture.
Assuntos
Ácidos Graxos , Estudo de Associação Genômica Ampla , Feminino , Bovinos/genética , Animais , Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Leite/química , Proteínas do Leite/análise , Caseínas/análiseRESUMO
BACKGROUND: Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. RESULTS: No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. CONCLUSIONS: We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Mutagênese , MutaçãoRESUMO
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA-editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole-genome and high-depth RNA sequencing to discover, characterize, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply sequenced cows, we identify 2413 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (98.6%). Most sites are predicted to reside in double-stranded secondary structures (85.1%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlight 152 cis-regulated edQTL, of which 15 appear to cosegregate with expression QTL effects. Trait association analyses in a separate population of 9989 lactating cows also shows 12 of the cis-edQTL coincide with at least one cosegregating lactation QTL. Together, these results enhance our understanding of RNA-editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA editing mediated processes.
Assuntos
Regulação da Expressão Gênica , Mamíferos/genética , Edição de RNA , Animais , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional/métodos , Sequência Consenso , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Locos de Características Quantitativas , Característica Quantitativa HerdávelRESUMO
BACKGROUND: Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS: Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS: This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.
Assuntos
Bovinos/genética , Leite/química , Locos de Características Quantitativas , Animais , Estudo de Associação Genômica Ampla , Hibridização Genética , Leite/normas , Oligossacarídeos/análise , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
BACKGROUND: The DGAT1 gene encodes an enzyme responsible for catalysing the terminal reaction in mammary triglyceride synthesis, and underpins a well-known pleiotropic quantitative trait locus (QTL) with a large influence on milk composition phenotypes. Since first described over 15 years ago, a protein-coding variant K232A has been assumed as the causative variant underlying these effects, following in-vitro studies that demonstrated differing levels of triglyceride synthesis between the two protein isoforms. RESULTS: We used a large RNAseq dataset to re-examine the underlying mechanisms of this large milk production QTL, and hereby report novel expression-based functions of the chr14 g.1802265AA > GC variant that encodes the DGAT1 K232A substitution. Using expression QTL (eQTL) mapping, we demonstrate a highly-significant mammary eQTL for DGAT1, where the K232A mutation appears as one of the top associated variants for this effect. By conducting in vitro expression and splicing experiments in bovine mammary cell culture, we further show modulation of splicing efficiency by this mutation, likely through disruption of an exon splice enhancer as a consequence of the allele encoding the 232A variant. CONCLUSIONS: The relative contributions of the enzymatic and transcription-based mechanisms now attributed to K232A remain unclear; however, these results suggest that transcriptional impacts contribute to the diversity of lactation effects observed at the DGAT1 locus.
Assuntos
Diacilglicerol O-Aciltransferase , Lactação , Animais , Bovinos , Diacilglicerol O-Aciltransferase/genética , Éxons , Feminino , Expressão Gênica , Leite , MutaçãoRESUMO
We herein report the result of a large-scale, next generation sequencing (NGS)-based screen for embryonic lethal (EL) mutations in Belgian beef and New Zealand dairy cattle. We estimated by simulation that cattle might carry, on average, â¼0.5 recessive EL mutations. We mined exome sequence data from >600 animals, and identified 1377 stop-gain, 3139 frame-shift, 1341 splice-site, 22,939 disruptive missense, 62,399 benign missense, and 92,163 synonymous variants. We show that cattle have a comparable load of loss-of-function (LoF) variants (defined as stop-gain, frame-shift, or splice-site variants) as humans despite having a more variable exome. We genotyped >40,000 animals for up to 296 LoF and 3483 disruptive missense, breed-specific variants. We identified candidate EL mutations based on the observation of a significant depletion in homozygotes. We estimated the proportion of EL mutations at 15% of tested LoF and 6% of tested disruptive missense variants. We confirmed the EL nature of nine candidate variants by genotyping 200 carrier × carrier trios, and demonstrating the absence of homozygous offspring. The nine identified EL mutations segregate at frequencies ranging from 1.2% to 6.6% in the studied populations and collectively account for the mortality of â¼0.6% of conceptuses. We show that EL mutations preferentially affect gene products fulfilling basic cellular functions. The resulting information will be useful to avoid at-risk matings, thereby improving fertility.
Assuntos
Bovinos/genética , Fertilidade/genética , Genes Letais , Mutação , Animais , Bovinos/embriologia , Bovinos/fisiologia , Testes Genéticos/métodos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Genética Reversa/métodos , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Over many years, artificial selection has substantially improved milk production by cows. However, the genes that underlie milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we investigate a previously reported QTL located at the CSF2RB locus on chromosome 5, for several milk production phenotypes, to better understand its underlying genetic and molecular causes. RESULTS: Using a population of 29,350 taurine dairy cows, we conducted association analyses for milk yield and composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein concentration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were used to investigate eQTL for 11 genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating one or both of these genes as responsible for these effects. Using the same gene expression dataset representing 357 lactating cows, we also identified 38 novel RNA editing sites in the 3' UTR of CSF2RB transcripts. The extent to which two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further layer of regulatory complexity that involves the CSF2RB gene. CONCLUSIONS: This locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes.
Assuntos
Bovinos/genética , Subunidade beta Comum dos Receptores de Citocinas/genética , Lactação/genética , Fenótipo , Locos de Características Quantitativas , Regiões 3' não Traduzidas , Animais , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Feminino , Masculino , Leite/metabolismo , Fosfoproteínas/genéticaRESUMO
BACKGROUND: White spotting of the coat is a characteristic trait of various domestic species including cattle and other mammals. It is a hallmark of Holstein-Friesian cattle, and several previous studies have detected genetic loci with major effects for white spotting in animals with Holstein-Friesian ancestry. Here, our aim was to better understand the underlying genetic and molecular mechanisms of white spotting, by conducting the largest mapping study for this trait in cattle, to date. RESULTS: Using imputed whole-genome sequence data, we conducted a genome-wide association analysis in 2973 mixed-breed cows and bulls. Highly significant quantitative trait loci (QTL) were found on chromosomes 6 and 22, highlighting the well-established coat color genes KIT and MITF as likely responsible for these effects. These results are in broad agreement with previous studies, although we also report a third significant QTL on chromosome 2 that appears to be novel. This signal maps immediately adjacent to the PAX3 gene, which encodes a known transcription factor that controls MITF expression and is the causal locus for white spotting in horses. More detailed examination of these loci revealed a candidate causal mutation in PAX3 (p.Thr424Met), and another candidate mutation (rs209784468) within a conserved element in intron 2 of MITF transcripts expressed in the skin. These analyses also revealed a mechanistic ambiguity at the chromosome 6 locus, where highly dispersed association signals suggested multiple or multiallelic QTL involving KIT and/or other genes in this region. CONCLUSIONS: Our findings extend those of previous studies that reported KIT as a likely causal gene for white spotting, and report novel associations between candidate causal mutations in both the MITF and PAX3 genes. The sizes of the effects of these QTL are substantial, and could be used to select animals with darker, or conversely whiter, coats depending on the desired characteristics.
Assuntos
Bovinos/genética , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Pigmentação da Pele/genética , Animais , Estudo de Associação Genômica Ampla , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX3/genética , Proteínas Proto-Oncogênicas c-kit/genéticaRESUMO
Inflammation of the mammary gland following bacterial infection, commonly known as mastitis, affects all mammalian species. Although the aetiology and epidemiology of mastitis in the dairy cow are well described, the genetic factors mediating resistance to mammary gland infection are not well known, due in part to the difficulty in obtaining robust phenotypic information from sufficiently large numbers of individuals. To address this problem, an experimental mammary gland infection experiment was undertaken, using a Friesian-Jersey cross breed F2 herd. A total of 604 animals received an intramammary infusion of Streptococcus uberis in one gland, and the clinical response over 13 milkings was used for linkage mapping and genome-wide association analysis. A quantitative trait locus (QTL) was detected on bovine chromosome 11 for clinical mastitis status using micro-satellite and Affymetrix 10 K SNP markers, and then exome and genome sequence data used from the six F1 sires of the experimental animals to examine this region in more detail. A total of 485 sequence variants were typed in the QTL interval, and association mapping using these and an additional 37 986 genome-wide markers from the Illumina SNP50 bovine SNP panel revealed association with markers encompassing the interleukin-1 gene cluster locus. This study highlights a region on bovine chromosome 11, consistent with earlier studies, as conferring resistance to experimentally induced mammary gland infection, and newly prioritises the IL1 gene cluster for further analysis in genetic resistance to mastitis.
Assuntos
Mastite Bovina/genética , Mastite Bovina/imunologia , Infecções Estreptocócicas/veterinária , Animais , Bovinos , Mapeamento Cromossômico/veterinária , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Hibridização Genética , Mastite Bovina/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genéticaRESUMO
BACKGROUND: Lactose provides an easily-digested energy source for neonates, and is the primary carbohydrate in milk in most species. Bovine lactose is also a key component of many human food products. However, compared to analyses of other milk components, the genetic control of lactose has been little studied. Here we present the first GWAS focussed on analysis of milk lactose traits. RESULTS: Using a discovery population of 12,000 taurine dairy cattle, we detail 27 QTL for lactose concentration and yield, and subsequently validate the effects of 26 of these loci in a distinct population of 18,000 cows. We next present data implicating causative genes and variants for these QTL. Fine mapping of these regions using imputed, whole genome sequence-resolution genotypes reveals protein-coding candidate causative variants affecting the ABCG2, DGAT1, STAT5B, KCNH4, NPFFR2 and RNF214 genes. Eleven of the remaining QTL appear to be driven by regulatory effects, suggested by the presence of co-locating, co-segregating eQTL discovered using mammary RNA sequence data from a population of 357 lactating cows. Pathway analysis of genes representing all lactose-associated loci shows significant enrichment of genes located in the endoplasmic reticulum, with functions related to ion channel activity mediated through the LRRC8C, P2RX4, KCNJ2 and ANKH genes. A number of the validated QTL are also found to be associated with additional milk volume, fat and protein phenotypes. CONCLUSIONS: Overall, these findings highlight novel candidate genes and variants involved in milk lactose regulation, whose impacts on membrane transport mechanisms reinforce the key osmo-regulatory roles of lactose in milk.
Assuntos
Lactose/metabolismo , Proteínas de Membrana Transportadoras/genética , Leite/metabolismo , Locos de Características Quantitativas , Alelos , Animais , Bovinos , Feminino , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Transporte de Íons/genética , Lactação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Análise de Sequência de RNARESUMO
Coordinated regulation of endometrial gene expression is essential for successful pregnancy establishment. A nonreceptive uterine environment may be a key contributor to pregnancy loss, as the majority of pregnancy losses occur prior to embryo implantation. DNA methylation has been highlighted as a potential contributor in regulating early pregnancy events in the uterus. It was hypothesized that DNA methylation regulates expression of key genes in the uterus during pregnancy. The correlation between DNA methylation and gene expression was tested. Endometrial samples from fertile and subfertile dairy cow strains were obtained at day 17 of pregnancy or the reproductive cycle. Microarrays were used to characterize genome-wide DNA methylation profiles and data compared with previously published transcription profiles. 39% of DNA methylation probes assayed mapped to RefSeq genes with transcription measurements. Correlations among gene expression and DNA methylation were assessed, and the 1,000 most significant correlations used for subsequent analysis. Of these, 52% percent were negatively correlated with gene expression. When this gene list was compared with previously reported gene expression studies on the same tissues, 42% were differentially expressed when pregnant and cycling animals were compared, and 11% were differentially expressed when pregnant fertile and subfertile animals were compared. DNA methylation status was correlated with gene expression in several pathways implicated in early pregnancy events. Although these data do not provide direct evidence of a causative association between DNA methylation and gene expression, this study provides critical support for an effect of DNA methylation in early pregnancy events and highlights candidate genes for future studies.
Assuntos
Bovinos/fisiologia , Metilação de DNA/fisiologia , Expressão Gênica , Prenhez , Animais , Bovinos/genética , Metilação de DNA/genética , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Idade Gestacional , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/veterinária , Ciclo Menstrual/genética , Análise em Microsséries , Modelos Biológicos , Gravidez , Prenhez/genética , TranscriptomaRESUMO
A receptive uterine environment is a key component in determining a successful reproductive outcome. We tested the hypothesis that endometrial gene expression patterns differ in fertile and subfertile dairy cow strains. Twelve lactating dairy cattle of strains characterized as having fertile (n = 6) and subfertile (n = 6) phenotypes underwent embryo transfer on day 7 of the reproductive cycle. Caruncular and intercaruncular endometrial tissue was obtained at day 17 of pregnancy, and microarrays used to characterize transcriptional profiles. Statistical analysis of microarray data at day 17 of pregnancy revealed 482 and 1,021 differentially expressed transcripts (P value < 0.05) between fertile and subfertile dairy cow strains in intercaruncular and caruncular tissue, respectively. Functional analysis revealed enrichment for several pathways involved in key reproductive processes, including the immune response to pregnancy, luteolysis, and support of embryo growth and development, and in particular, regulation of histotroph composition. Genes implicated in the process of immune tolerance to the embryo were downregulated in subfertile cows, as were genes involved in preventing luteolysis and genes that promote embryo growth and development. This study provides strong evidence that the endometrial gene expression profile may contribute to the inferior reproductive performance of the subfertile dairy cow strain.