Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(47): 475709, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27782002

RESUMO

We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

2.
ACS Appl Mater Interfaces ; 11(11): 10777-10784, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30816033

RESUMO

For organic solar cells, the vertical and lateral micro-/nanometer-scale structure in the active layer largely determines the device performance. In this work, the surface and bulk domain size of the photoactive layer are successfully manipulated with a facile two-step spraying method, that is, an ultrathin active layer by high-pressure spraying is deliberately stacked on top of the thick active layer by ultrasonic spraying. Thus, the morphology is effectively optimized with the comprehensive study of optical and electrical characteristics, such as photon absorption, exciton dissociation efficiency, and bimolecular recombination. Moreover, the novel method can be used not only in the fullerene system but also in the nonfullerene system, demonstrating the remarkable universality through this synergy method. This work provides an easy and reliable strategy to improve photovoltaic device performance in the industrial large-area spray-coating process.

3.
ACS Appl Mater Interfaces ; 10(26): 22485-22494, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893117

RESUMO

Extremely simplified one-step roll-to-roll slot-die-printed flexible indium tin oxide (ITO)-free polymer solar cells (PSCs) are demonstrated based on the ternary blends of electron-donor polymer thieno[3,4- b]thiophene/benzodithiophene, electron-acceptor fullerene [6,6]-phenyl-C71-butyric acid methyl ester, and electron-extracting polymer poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) at room temperature (RT) in ambient air. The flexible ITO-free PSC exhibits a comparable power conversion efficiency (PCE) with the device employing complicated two-step slot-die printing (5.29% vs 5.41%), which indicates that PFN molecules can migrate from the ternary nanocomposite toward the Ag cathode via vertical self-assembly during the one-step slot-die printing process in air. To confirm the migration of PFN, the morphology and elemental analysis as well as charge transport of different active layers are investigated by the in situ transient film drying process, transmission electron microscopy, atomic force microscopy, contact angle and surface energy, X-ray photoelectron spectroscopy, scanning electron microscopy, impedance spectroscopy, transient photovoltage and transient photocurrent, and laser-beam-induced current. Moreover, the good air and mechanical stability of the flexible device with a decent PCE achieved in 1 cm2 PSCs at RT in air suggests the feasibility of energy-saving and time-saving one-step slot-die printing to large-scale roll-to-roll manufacture in the future.

4.
ACS Appl Mater Interfaces ; 9(51): 44656-44666, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29210561

RESUMO

In this work, high-performance inverted indium tin oxide (ITO)-free semitransparent polymer solar cells are comprehensively investigated using a novel polymer/metal hybrid transparent electrode. The electrical and optical characteristics of hybrid electrodes are significantly enhanced by introducing UV/ozone plasma treatment on the polymer poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN), which is functioned as both a seed layer for ultrathin Ag metal electrode and an optical spacer for transparent devices. The optimized sheet resistance of PFN/Ag (12 nm) hybrid electrode is only half of the commercial ITO (9.4 vs 20.0 Ω sq-1) and the high wavelength-dependent reflectance of hybrid electrode helps to increase the ITO-free device short-circuit current density. Furthermore, the interface property between PFN and ultrathin Ag is analyzed in detail and the optical field distribution is calculated for comparison. A high power conversion efficiency of 5.02%, which is increased by 35% compared to that of the ITO-based device, is achieved in the ITO-free semitransparent device in conjunction with an excellent average visible transmittance above 28% that is higher than the benchmark of 25% for power-generating window, indicating its great potential in building integrated photovoltaic systems in the future. Furthermore, the strategy is successfully developed for other polymer systems, suggesting the universal applicability for plastic electronics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa