Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 624(7992): 611-620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907096

RESUMO

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Assuntos
Senescência Celular , Quitinases , Microglia , Neurônios Motores , Primatas , Medula Espinal , Animais , Humanos , Biomarcadores/metabolismo , Quitinases/metabolismo , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Primatas/metabolismo , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735108

RESUMO

Metabolites such as crotonyl-CoA and lactyl-CoA influence gene expression by covalently modifying histones, known as histone lysine crotonylation (Kcr) and lysine lactylation (Kla). However, the existence patterns, dynamic changes, biological functions and associations of these modifications with histone lysine acetylation and gene expression during mammalian development remain largely unknown. Here, we find that histone Kcr and Kla are widely distributed in the brain and undergo global changes during neural development. By profiling the genome-wide dynamics of H3K9ac, H3K9cr and H3K18la in combination with ATAC and RNA sequencing, we reveal that these marks are tightly correlated with chromatin state and gene expression, and extensively involved in transcriptome remodeling to promote cell-fate transitions in the developing telencephalon. Importantly, we demonstrate that global Kcr and Kla levels are not the consequence of transcription and identify the histone deacetylases (HDACs) 1-3 as novel 'erasers' of H3K18la. Using P19 cells as an induced neural differentiation system, we find that HDAC1-3 inhibition by MS-275 pre-activates neuronal transcriptional programs by stimulating multiple histone lysine acylations simultaneously. These findings suggest that histone Kcr and Kla play crucial roles in the epigenetic regulation of neural development.


Assuntos
Histonas , Lisina , Acetilação , Animais , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional
3.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258338

RESUMO

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Assuntos
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biologia Sintética , Perileno/farmacologia , Perileno/metabolismo
4.
Mol Psychiatry ; 27(7): 2999-3009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484239

RESUMO

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.


Assuntos
Microglia , Células-Tronco Neurais , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Sinapses/metabolismo
5.
EMBO Rep ; 22(10): e52023, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34369651

RESUMO

Histone lysine crotonylation (Kcr), an evolutionarily conserved and widespread non-acetyl short-chain lysine acylation, plays important roles in transcriptional regulation and disease processes. However, the genome-wide distribution, dynamic changes, and associations with gene expression of histone Kcr during developmental processes are largely unknown. In this study, we find that histone Kcr is mainly located in active promoter regions, acts as an epigenetic hallmark of highly expressed genes, and regulates genes participating in metabolism and proliferation. Moreover, elevated histone Kcr activates bivalent promoters to stimulate gene expression in neural stem/progenitor cells (NSPCs) by increasing chromatin openness and recruitment of RNA polymerase II (RNAP2). Functionally, these activated genes contribute to transcriptome remodeling and promote neuronal differentiation. Overall, histone Kcr marks active promoters with high gene expression and modifies the local chromatin environment to allow gene activation.


Assuntos
Histonas , Células-Tronco Neurais , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
6.
Acta Pharmacol Sin ; 44(1): 234-243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35840659

RESUMO

Inositol-requiring enzyme 1α (IRE1α) is the most conserved endoplasmic reticulum (ER) stress sensor with two catalytic domains, kinase and RNase, in its cytosolic portion. IRE1α inhibitors have been used to improve existing clinical treatments against various cancers. In this study we identified toxoflavin (TXF) as a new-type potent small molecule IRE1α inhibitor. We used luciferase reporter systems to screen compounds that inhibited the IRE1α-XBP1s signaling pathway. As a result, TXF was found to be the most potent IRE1α RNase inhibitor with an IC50 value of 0.226 µM. Its inhibitory potencies on IRE1α kinase and RNase were confirmed in a series of cellular and in vitro biochemical assays. Kinetic analysis showed that TXF caused time- and reducing reagent-dependent irreversible inhibition on IRE1α, implying that ROS might participate in the inhibition process. ROS scavengers decreased the inhibition of IRE1α by TXF, confirming that ROS mediated the inhibition process. Mass spectrometry analysis revealed that the thiol groups of four conserved cysteine residues (CYS-605, CYS-630, CYS-715 and CYS-951) in IRE1α were oxidized to sulfonic groups by ROS. In molecular docking experiments we affirmed the binding of TXF with IRE1α, and predicted its binding site, suggesting that the structure of TXF itself participates in the inhibition of IRE1α. Interestingly, CYS-951 was just near the docked site. In addition, the RNase IC50 and ROS production in vitro induced by TXF and its derivatives were negative correlated (r = -0.872). In conclusion, this study discovers a new type of IRE1α inhibitor that targets a predicted new alternative site located in the junction between RNase domain and kinase domain, and oxidizes conserved cysteine residues of IRE1α active sites to inhibit IRE1α. TXF could be used as a small molecule tool to study IRE1α's role in ER stress.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inositol , Espécies Reativas de Oxigênio , Cisteína , Cinética , Simulação de Acoplamento Molecular , Ribonucleases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo
7.
Glia ; 69(5): 1292-1306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33492723

RESUMO

Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Encéfalo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Doenças Neurodegenerativas/genética , Transcriptoma
8.
Microb Cell Fact ; 20(1): 100, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992112

RESUMO

BACKGROUND: Owing to the excellent properties of photosensitization, cercosporin, one of naturally occurring perylenequinonoid pigments, has been widely used in photodynamic therapy, or as an antimicrobial agent and an organophotocatalyst. However, because of low efficiency of total chemical synthesis and low yield of current microbial fermentation, the limited production restricts its broad applications. Thus, the strategies to improve the production of cercosporin were highly desired. Besides traditional optimization methods, here we screened leaf-spot-disease-related endophytic bacteria to co-culture with our previous identified Cercospora sp. JNU001 to increase cercosporin production. RESULTS: Bacillus velezensis B04 and Lysinibacillus sp. B15 isolated from leaves with leaf spot diseases were found to facilitate cercosporin secretion into the broth and then enhance the production of cercosporin. After 4 days of co-culture, Bacillus velezensis B04 allowed to increase the production of cercosporin from 128.2 mg/L to 984.4 mg/L, which was 7.68-fold of the previously reported one. Lysinibacillus sp. B15 could also enhance the production of cercosporin with a yield of 626.3 mg/L, which was 4.89-fold higher than the starting condition. More importantly, we found that bacteria B04 and B15 employed two different mechanisms to improve the production of cercosporin, in which B04 facilitated cercosporin secretion into the broth by loosening and damaging the hyphae surface of Cercospora sp. JNU001 while B15 could adsorb cercosporin to improve its secretion. CONCLUSIONS: We here established a novel and effective co-culture method to improve the production of cercosporin by increasing its secretion ability from Cercospora sp. JNU001, allowing to develop more potential applications of cercosporin.


Assuntos
Cercospora/metabolismo , Endófitos/metabolismo , Interações Microbianas/fisiologia , Perileno/análogos & derivados , Doenças das Plantas/microbiologia , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Cercospora/genética , Cercospora/crescimento & desenvolvimento , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Técnicas In Vitro , Perileno/análise , Perileno/metabolismo
9.
Genes Dev ; 27(13): 1473-83, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23796896

RESUMO

Regulated gene expression determines the intrinsic ability of neurons to extend axons, and loss of such ability is the major reason for the failed axon regeneration in the mature mammalian CNS. MicroRNAs and histone modifications are key epigenetic regulators of gene expression, but their roles in mammalian axon regeneration are not well explored. Here we report microRNA-138 (miR-138) as a novel suppressor of axon regeneration and show that SIRT1, the NAD-dependent histone deacetylase, is the functional target of miR-138. Importantly, we provide the first evidence that miR-138 and SIRT1 regulate mammalian axon regeneration in vivo. Moreover, we found that SIRT1 also acts as a transcriptional repressor to suppress the expression of miR-138 in adult sensory neurons in response to peripheral nerve injury. Therefore, miR-138 and SIRT1 form a mutual negative feedback regulatory loop, which provides a novel mechanism for controlling intrinsic axon regeneration ability.


Assuntos
Axônios/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Regeneração/genética , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Camundongos , MicroRNAs/genética , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais , Sirtuína 1/genética
10.
J Neurosci ; 39(46): 9107-9118, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31597725

RESUMO

Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Regeneração Nervosa , Nervo Óptico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telomerase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos Endogâmicos C57BL
11.
J Cell Physiol ; 235(4): 4011-4021, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625158

RESUMO

The anatomical structure of the mammalian cerebral cortex is the essential foundation for its complex neural activity. This structure is developed by proliferation, differentiation, and migration of neural progenitor cells (NPCs), the fate of which is spatially and temporally regulated by the proper gene. This study was used in utero electroporation and found that the well-known oncogene c-Myc mainly promoted NPCs' proliferation and their transformation into intermediate precursor cells. Furthermore, the obtained results also showed that c-Myc blocked the differentiation of NPCs to postmitotic neurons, and the expression of telomere reverse transcriptase was controlled by c-Myc in the neocortex. These findings indicated c-Myc as a key regulator of the fate of NPCs during the development of the cerebral cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Córtex Cerebral/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Gravidez , Células-Tronco/metabolismo
12.
Cell Commun Signal ; 18(1): 44, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164705

RESUMO

BACKGROUND: Sialic acids are widely distributed in animal tissues, and aberrantly expressed in a variety of cancer types. High expression of sialic acid contributes to tumor aggressiveness by promoting cell proliferation, migration, angiogenesis, and metastasis. Sialidases are responsible for removal of sialic acids from glycoproteins and glycolipids. METHODS: N-glycomics of bladder cancer cells were detected by MALDI-TOF mass spectrometry. Sialic acid modification in bladder cancer tissue was determined by lectin blot. The down-regulation of NEU1 in bladder cancer cells was determined by high resolution liquid chromatography mass spectrometry (HR LC-MS). The effects of sialidase NEU1 expression on proliferation and apoptosis of human bladder cancer cells were examined by western blot, RT-PCR, confocal imaging and flow cytometry. Moreover, the function of sialic acids on fibronectin-integrin α5ß1 interaction were assayed by immunoprecipitation and ELISA. The importance of NEU1 in tumor formation in vivo was performed using BALB/c-nu mice. Expression of NEU1 in primary human bladder cancer tissue samples was estimated using bladder cancer tissue microarray. RESULTS: (1) Downregulation of NEU1 was primarily responsible for aberrant expression of sialic acids in bladder cancer cells. (2) Decreased NEU1 expression was correlated with bladder cancer progression. (3) NEU1 overexpression enhanced apoptosis and reduced proliferation of bladder cancer cells. (4) NEU1 disrupted FN-integrin α5ß1 interaction and deactivated the Akt signaling pathway. (5) NEU1 significantly suppressed in vivo tumor formation in BALB/c-nu mice. CONCLUSIONS: Our data showed that NEU1 inhibited cancer cell proliferation, induced apoptosis, and suppressed tumor formation both in vitro and in vivo, by disrupting interaction of FN and integrin ß1 and inhibiting the Akt signaling pathway. Our observations indicate that NEU1 is an important modulator of the malignant properties of bladder cancer cells, and is a potential therapeutic target for prognosis and treatment of bladder cancer. Video Abstract.


Assuntos
Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Neuraminidase/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
13.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198166

RESUMO

Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C-H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C-H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C-H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.


Assuntos
Aminoácidos/química , Carbono/química , Química Orgânica/métodos , Hidrogênio/química , Aminas , Bromo/química , Técnicas de Química Sintética , Cloro/química , Peptídeos/química , Fotoquímica/métodos
14.
J Cell Physiol ; 234(12): 22517-22528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102288

RESUMO

The inflammatory response is a critical regulator for the regeneration of axon following nervous system injury. Nuclear factor-kappa B (NF-κB) is characteristically known for its ubiquitous role in the inflammatory response. However, its functional role in adult mammalian axon growth remains elusive. Here, we found that the NF-κB signaling pathway is activated in adult sensory neurons through peripheral axotomy. Furthermore, inhibition of NF-κB in peripheral sensory neurons attenuated their axon growth in vitro and in vivo. Our results also showed that NF-κB modulated axon growth by repressing the phosphorylation of STAT3. Furthermore, activation of STAT3 significantly promoted adult optic nerve regeneration. Taken together, the findings of our study indicated that NF-κB/STAT3 cascade is a critical regulator of intrinsic axon growth capability in the adult nervous system.


Assuntos
Axônios/fisiologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regeneração/fisiologia , Fator de Transcrição STAT3/metabolismo , Animais , Anticorpos , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Gliceraldeído 3-Fosfato/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nervo Óptico , Prolina/análogos & derivados , Prolina/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Nervo Isquiático , Tiocarbamatos/farmacologia
15.
J Cell Physiol ; 234(12): 23053-23065, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31134625

RESUMO

While axon regeneration is a key determinant of functional recovery of the nervous system after injury, it is often poor in the mature nervous system. Influx of extracellular calcium (Ca2+ ) is one of the first phenomena that occur following axonal injury, and calcium/calmodulin-dependent protein kinase II (CaMKII), a target substrate for calcium ions, regulates the status of cytoskeletal proteins such as F-actin. Herein, we found that peripheral axotomy activates CaMKII in dorsal root ganglion (DRG) sensory neurons, and inhibition of CaMKII impairs axon outgrowth in both the peripheral and central nervous systems (PNS and CNS, respectively). Most importantly, we also found that the activation of CaMKII promotes PNS and CNS axon growth, and regulatory effects of CaMKII on axon growth occur via affecting the length of the F-actin. Thus, we believe our findings provide clear evidence that CaMKII is a critical modulator of mammalian axon regeneration.


Assuntos
Actinas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Regeneração Nervosa/genética , Crescimento Neuronal/genética , Animais , Axônios/metabolismo , Axônios/patologia , Cálcio/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Cones de Crescimento/metabolismo , Humanos , Camundongos , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/patologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
17.
Biochem Biophys Res Commun ; 499(2): 246-252, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567480

RESUMO

Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system.


Assuntos
Envelhecimento/metabolismo , Axônios/fisiologia , Fator de Transcrição GATA4/metabolismo , Gânglios Espinais/metabolismo , Regeneração Nervosa/fisiologia , Proteína Wnt3/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , Fenótipo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Wnt3/genética
19.
Int J Mol Sci ; 18(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763000

RESUMO

Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors of normal cells. In this study, a culture of normal breast epithelial MCF10A cells with CM from malignant breast cancer cells (termed 231-CM and 453-CM) resulted in an alteration of morphology. CM-treated MCF10A, in comparison with control cells, showed a reduced expression of the epithelial marker E-cadherin, increased expression of the mesenchymal markers fibronectin, vimentin, N-cadherin, and TWIST1, meanwhile cell proliferation and migration were enhanced while cell apoptosis was decreased. N-glycan profiles of 231-CM-treated and control MCF10A cells were compared by MALDI-TOF/TOF-MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry) and a lectin microarray analysis. The treated cells showed lower levels of high-mannose-type N-glycan structures, and higher levels of complex-type and hybrid-type structures. Altered N-glycan profiles were also detected in 453-CM-treated and non-treated MCF10A cells by MALDI-TOF/TOF-MS, and we found that the expression of five fucosylated N-glycan structures (m/z 1406.663, 1590.471, 1668.782, 2421.141, and 2988.342) and one high-mannose structure m/z 1743.722 have the same pattern as 231-CM-treated MCF10A cells. Our findings, taken together, show that CM derived from breast cancer cells induced an EMT-like process in normal epithelial cells and altered their N-glycan profile.


Assuntos
Neoplasias da Mama/patologia , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Polissacarídeos/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Feminino , Humanos , Lectinas/metabolismo , Análise em Microsséries , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Crescimento Transformador beta/farmacologia
20.
Neural Plast ; 2016: 1279051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818801

RESUMO

Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord.


Assuntos
Axônios/fisiologia , MicroRNAs/genética , Regeneração Nervosa/genética , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Animais , Modelos Animais de Doenças , Humanos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa