Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 83: 206-215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710300

RESUMO

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Assuntos
Ácido Aminolevulínico , Engenharia Metabólica , Shewanella , Shewanella/genética , Shewanella/metabolismo , Ácido Aminolevulínico/metabolismo
2.
Biotechnol Bioeng ; 121(3): 980-990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088435

RESUMO

Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.


Assuntos
Compostos de Amônio , Compostos de Amônio/metabolismo , Alcaligenes/genética , Alcaligenes/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Águas Residuárias , Nitrogênio/metabolismo , Desnitrificação , Oxirredução , Reatores Biológicos
3.
Environ Sci Technol ; 58(17): 7291-7301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623940

RESUMO

The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 µg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 µg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.


Assuntos
Resistência Microbiana a Medicamentos , Ácidos Ftálicos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias , Biofilmes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 58(22): 9636-9645, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770702

RESUMO

Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.


Assuntos
Resistência Microbiana a Medicamentos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias , Humanos , Monitoramento Ambiental/métodos , Cidades , China , COVID-19
5.
Environ Sci Technol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226031

RESUMO

Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.

6.
Nucleic Acids Res ; 50(13): 7739-7750, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776123

RESUMO

Genomic integration techniques offer opportunities for generation of engineered microorganisms with improved or even entirely new functions but are currently limited by inability for efficient insertion of long genetic payloads due to multiplexing. Herein, using Shewanella oneidensis MR-1 as a model, we developed an optimized CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST system), which enables programmable, RNA-guided transposition of ultra-long DNA sequences (30 kb) onto bacterial chromosomes at ∼100% efficiency in a single orientation. In this system, a crRNA (CRISPR RNA) was used to target multicopy loci like insertion-sequence elements or combining I-SceI endonuclease, thereby allowing efficient single-step multiplexed or iterative DNA insertions. The engineered strain exhibited drastically improved substrate diversity and extracellular electron transfer ability, verifying the success of this system. Our work greatly expands the application range and flexibility of genetic engineering techniques and may be readily extended to other bacteria for better controlling various microbial processes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Integrases , Sequência de Bases , Sistemas CRISPR-Cas/genética , Genômica , Integrases/metabolismo , RNA
7.
Nano Lett ; 23(2): 558-566, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594792

RESUMO

Measurement of electron transfer at the single-particle or -cell level is crucial to the in situ study of basic chemical and biological processes. However, it remains challenging to directly probe the microbial extracellular electron transfer process due to the weakness of signals and the lack of techniques. Here, we present a label-free and noninvasive imaging method that is able to measure the electron transfer in microbial cells. We measured the extracellular electron transfer processes by imaging the redox reaction of c-type outer membrane cytochromes in microbial cells using a plasmonic imaging technique, and obtained the electrochemical activity parameters (formal potential and number of electrons transferred) of multiple individual microbial cells, allowing for unveiling ample heterogeneities in electron transfer at the single-cell level. We anticipate that this method will contribute to the study of electron transfer in various biological and chemical processes.


Assuntos
Elétrons , Imagem Óptica , Transporte de Elétrons , Oxirredução
8.
Biotechnol Bioeng ; 120(10): 3001-3012, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209207

RESUMO

Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.


Assuntos
Poluentes Ambientais , Geobacter , Geobacter/genética , Poluentes Ambientais/metabolismo , Transporte de Elétrons , Expressão Gênica , Oxirredução
9.
Biotechnol Bioeng ; 120(5): 1346-1356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779277

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.


Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , Oxirredução
10.
Environ Sci Technol ; 57(17): 6876-6887, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083356

RESUMO

Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms. Dimethyl phthalate (DMP, a model PAE) at environmentally relevant concentrations (2-50 µg/L) significantly boosted the plasmid-mediated conjugation transfer of ARGs among intrageneric, intergeneric, and wastewater microbiota by up to 3.82, 4.96, and 4.77 times, respectively. The experimental and molecular dynamics simulation results unveil a strong interaction between the DMP molecules and phosphatidylcholine bilayer of the cell membrane, which lowers the membrane lipid fluidity and increases the membrane permeability to favor transfer of ARGs. In addition, the increased reactive oxygen species generation and conjugation-associated gene overexpression under DMP stress also contribute to the increased gene transfer. This study provides fundamental knowledge of the PAE-bacteria interactions to broaden our understanding of the environmental and ecological risks of plastics, especially in niches with colonized microbes, and to guide the control of ARG environmental spreading.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Plásticos , Transferência Genética Horizontal
11.
Environ Res ; 236(Pt 2): 116834, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544466

RESUMO

Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior. Dissolved organic matter (DOM) in the environment greatly affects the fate of Sb. Microbially produced DOM is a vital component of environmental DOM; however, its specific role in Sb(III) oxidation has not been experimentally confirmed. In this work, the oxidation capacity of several Shewanella strains and their derived DOM to Sb(III) was confirmed. The oxidation rate of Sb(III) shows a positive correlation with DOM concentration, with higher rates observed under neutral and weak alkaline conditions, regardless of the presence of light. Incubation experiments indicated that extracellular enzymes and common reactive oxygen species were not involved in the oxidation of Sb(III). Characteristics of DOM suggests that microbial humic acid-like and fulvic acid-like substances are the potential contributors to Sb(III) oxidation. These findings not only experimentally validate the role of bacterial-derived DOM in Sb(III) oxidation but also reveal the significance of Shewanella and biogenic DOM in the biogeochemical cycling of Sb.


Assuntos
Shewanella , Oxirredução , Substâncias Húmicas/análise , Antimônio/química , Matéria Orgânica Dissolvida
12.
J Am Chem Soc ; 144(14): 6434-6441, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377628

RESUMO

The biotic-abiotic photosynthetic system integrating inorganic light absorbers with whole-cell biocatalysts innovates the way for sustainable solar-driven chemical transformation. Fundamentally, the electron transfer at the biotic-abiotic interface, which may induce biological response to photoexcited electron stimuli, plays an essential role in solar energy conversion. Herein, we selected an electro-active bacterium Shewanella oneidensis MR-1 as a model, which constitutes a hybrid photosynthetic system with a self-assembled CdS semiconductor, to demonstrate unique biotic-abiotic interfacial behavior. The photoexcited electrons from CdS nanoparticles can reverse the extracellular electron transfer (EET) chain within S. oneidensis MR-1, realizing the activation of a bacterial catalytic network with light illumination. As compared with bare S. oneidensis MR-1, a significant upregulation of hydrogen yield (711-fold), ATP, and reducing equivalent (NADH/NAD+) was achieved in the S. oneidensis MR-1-CdS under visible light. This work sheds light on the fundamental mechanism and provides design guidelines for biotic-abiotic photosynthetic systems.


Assuntos
Elétrons , Shewanella , Transporte de Elétrons , Hidrogênio , Fotossíntese
13.
Environ Microbiol ; 24(4): 1838-1848, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170205

RESUMO

Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.


Assuntos
Poluentes Ambientais , Shewanella , Transporte de Elétrons , Elétrons , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Shewanella/metabolismo
14.
Environ Sci Technol ; 56(1): 595-604, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932326

RESUMO

Iron-dependent autotrophic denitrification (IDAD) has garnered increasing interests as an efficient method for removing nitrogen from wastewater with a low carbon to nitrogen ratio. However, an inevitable deterioration of IDAD performance casts a shadow over its further development. In this work, the hidden cause for such a deterioration is uncovered, and a viable solution to this problem is provided. Batch test results reveal that the aggregation of microbial cells and iron-bearing minerals induced a cumulative and reversible inhibition on the activity of IDAD sludge. Extracellular polymeric substances were found to play a glue-like role in the cell-iron mineral aggregates, where microbial cells were caged, and their metabolisms were suppressed. Adopting low-intensity ultrasound treatment efficiently restored the IDAD activity by disintegrating such aggregates rather than stimulating the microbial metabolism. Moreover, the ultrasonication-assisted IDAD bioreactor exhibited an advantageous nitrogen removal efficiency (with a maximum enhancement of 72.3%) and operational stability compared to the control one, demonstrating a feasible strategy to achieve long-term stability of the IDAD process. Overall, this work provides a better understanding about the mechanism for the performance deterioration and a simple approach to maintain the stability of IDAD.


Assuntos
Desnitrificação , Ferro , Processos Autotróficos , Reatores Biológicos , Minerais , Nitratos , Nitrogênio , Águas Residuárias
15.
Environ Sci Technol ; 56(22): 15685-15694, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36251006

RESUMO

Aquatic environments are important reservoirs of antibiotic wastes, antibiotic resistance genes, and bacteria, enabling the persistence and proliferation of antibiotic resistance in different bacterial populations. To prevent the spread of antibiotic resistance, effective approaches to detect antimicrobial susceptibility in aquatic environments are highly desired. In this work, we adopt a metabolism-based bioorthogonal noncanonical amino acid tagging (BONCAT) method to detect, visualize, and quantify active antimicrobial-resistant bacteria in water samples by exploiting the differences in bacterial metabolic responses to antibiotics. The BONCAT approach can be applied to rapidly detect bacterial resistance to multiple antibiotics within 20 min of incubation, regardless of whether they act on proteins or DNA. In addition, the combination of BONCAT with the microscope enables the intuitive characterization of antibiotic-resistant bacteria in mixed systems at single-cell resolution. Furthermore, BONCAT coupled with flow cytometry exhibits good performance in determining bacterial resistance ratios to chloramphenicol and population heterogeneity in hospital wastewater samples. In addition, this approach is also effective in detecting antibiotic-resistant bacteria in natural water samples. Therefore, such a simple, fast, and efficient BONCAT-based approach will be valuable in monitoring the increase and spread of antibiotic resistance within natural and engineered aquatic environments.


Assuntos
Aminoácidos , Bactérias , Bactérias/genética , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Água
16.
Environ Sci Technol ; 56(22): 16410-16418, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36268776

RESUMO

The microbial metabolism of arsenic plays a prominent role in governing the biogeochemical cycle of arsenic. Although diverse microbes are known to be involved in the redox transformation of inorganic arsenic, the underlying mechanisms about the arsenic redox cycle mediated by a single microbial strain remain unclear yet. Herein, we discover that Shewanella putrefaciens CN32, a well-known arsenate-respiring and dissimilatory metal-reducing bacterium, could mediate the reversible arsenic redox transformation under aerobic conditions. Genetic analysis shows that S. putrefaciens CN32 contains both ars and arr operon but lacks an As(III) oxidase encoding gene. Arsenic(V) reduction tests demonstrate that the ars operon is advantageous but not essential for As(V) respiration in S. putrefaciens CN32. The Arr complex encoded by the arr operon not only plays a crucial role in arsenate respiration under anaerobic conditions but also participates in the sequential process of As(V) reduction and As(III) oxidation under aerobic conditions. The Arr enzyme also contributes to the microbial As(III) resistance. The expression and catalysis directionality of Arr in S. putrefaciens CN32 are regulated by the carbon source types. Our results highlight the complexity of arsenic redox biotransformation in environments and provide new insights into the important contribution of Arr to the As biogeochemical cycle in nature.


Assuntos
Arsênio , Arsenicais , Shewanella putrefaciens , Arseniatos , Arsênio/metabolismo , Shewanella putrefaciens/metabolismo , Oxirredução
17.
Environ Sci Technol ; 56(6): 3812-3820, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35226466

RESUMO

Functional material synthesis through biomineralization is effective and environmentally friendly. Biomineralized manganese (Mn) oxides are important for remediation and energy storage. Manganese(II) biomineralization is achieved by a diverse group of bacteria. We show that in the presence of oxygen the dissimilatory manganese-reducing bacterium Shewanella putrefaciens CN32 can oxidize Mn(II). The Mn(II) oxidation was accelerated with the increase in the initial Mn(II) concentration from 0.5 to 3 mM. The reaction was mainly associated with a cell-free filtrate, rather than the direct enzymatic oxidation or indirect oxidation by reactive oxygen species or macrocyclic siderophores. Instead, indirect oxidization of Mn(II) into soluble Mn(III) and bixbyite-like Mn2O3 via microbially produced extracellular ligands (molecular weights of 1-3 kDa) was identified. This work broadens our view about microbial Mn(II) oxidation and unveils the important roles of Shewanella species in the geochemical cycling of manganese.


Assuntos
Shewanella putrefaciens , Shewanella , Ligantes , Manganês , Compostos de Manganês/química , Oxirredução , Óxidos/química
18.
Environ Sci Technol ; 56(17): 12247-12256, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35960254

RESUMO

Geobacter species are critically involved in elemental biogeochemical cycling and environmental bioremediation processes via extracellular electron transfer (EET), but the underlying biomolecular mechanisms remain elusive due to lack of effective analytical tools to explore into complicated EET networks. Here, a simple and highly efficient cytosine base editor was developed for engineering of the slow-growing Geobacter sulfurreducens (a doubling time of 5 h with acetate as the electron donor and fumarate as the electron acceptor). A single-plasmid cytosine base editor (pYYDT-BE) was constructed in G. sulfurreducens by fusing cytosine deaminase, Cas9 nickase, and a uracil glycosylase inhibitor. This system enabled single-locus editing at 100% efficiency and showed obvious preference at the cytosines in a TC, AC, or CC context than in a GC context. Gene inactivation tests confirmed that it could effectively edit 87.7-93.4% genes of the entire genome in nine model Geobacter species. With the aid of this base editor to construct a series of G. sulfurreducens mutants, we unveiled important roles of both pili and outer membrane c-type cytochromes in long-range EET, thereby providing important evidence to clarify the long-term controversy surrounding their specific roles. Furthermore, we find that pili were also involved in the extracellular reduction of uranium and clarified the key roles of the ExtHIJKL conduit complex and outer membrane c-type cytochromes in the selenite reduction process. This work developed an effective base editor tool for the genetic modification of Geobacter species and provided new insights into the EET network, which lay a basis for a better understanding and engineering of these microbes to favor environmental applications.


Assuntos
Poluentes Ambientais , Geobacter , Citocromos/metabolismo , Citosina/metabolismo , Transporte de Elétrons , Poluentes Ambientais/metabolismo , Compostos Férricos/metabolismo , Geobacter/metabolismo , Oxirredução
19.
Environ Microbiol ; 23(12): 7578-7590, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837302

RESUMO

Antimicrobial-resistant pathogens in the environment and wastewater treatment systems, many of which are also important pollutant degraders and are difficult to control by traditional disinfection approaches, have become an unprecedented treat to ecological security and human health. Here, we propose the adoption of genetic editing techniques as a highly targeted, efficient and simple tool to control the risks of environmental pathogens at the source. An 'all-in-one' plasmid system was constructed in Aeromonas hydrophila to accurately identify and selectively inactivate multiple key virulence factor genes and antibiotic resistance genes via base editing, enabling significantly suppressed bacterial virulence and resistance without impairing their normal phenotype and pollutant-degradation functions. Its safe application for bioaugmented treatment of synthetic textile wastewater was also demonstrated. This genetic-editing technique may offer a promising solution to control the health risks of environmental microorganisms via targeted gene inactivation, thereby facilitating safer application of water treatment biotechnologies.


Assuntos
Águas Residuárias , Purificação da Água , Antibacterianos/farmacologia , Biotecnologia , Resistência Microbiana a Medicamentos/genética , Edição de Genes
20.
Biotechnol Bioeng ; 118(12): 4760-4770, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546573

RESUMO

Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.


Assuntos
Aeromonas hydrophila , Biodegradação Ambiental , Elétrons , Poluentes Químicos da Água , Aeromonas hydrophila/química , Aeromonas hydrophila/metabolismo , Flavinas/metabolismo , Naftoquinonas/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa