Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675514

RESUMO

Cobalt complexes have previously been reported to exhibit high faradaic efficiency in reducing CO2 to CO. Herein, we synthesized capsule-like cobalt-polypyridine diamine complexes [Co(L1)](BF4)2 (1) and [Co(L2) (CH3CN)](BF4)2 (2) as catalysts for the electrocatalytic reduction of CO2. Under catalytic conditions, complexes 1 and 2 demonstrated the electrocatalytic reduction of CO2 to CO in the presence or absence of CH3OH as a proton source. Experimental and computational studies revealed that complexes 1 and 2 undergo two consecutive reversible one-electron reductions on the cobalt core, followed by the addition of CO2 to form a metallocarboxylate intermediate [CoII(L)-CO22-]0. This crucial reaction intermediate, which governs the catalytic cycle, was successfully detected using high resolution mass spectrometry (HRMS). In situ Fourier-transform infrared spectrometer (FTIR) analysis showed that methanol can enhance the rate of carbon-oxygen bond cleavage of the metallocarboxylate intermediate. DFT studies on [CoII(L)-CO22-]0 have suggested that the doubly reduced species attacks CO2 on the C atom through the dz2 orbital, while the interaction with CO2 is further stabilized by the π interaction between the metal dxz or dxz orbital with p orbitals on the O atoms. Further reductions generate a metal carbonyl intermediate [CoI(L)-CO]+, which ultimately releases CO.

2.
Nanomaterials (Basel) ; 14(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39120360

RESUMO

A multi-stimuli responsive fluorophore, named NBDNI, was developed by constructing a 1,8-naphthalimide derivative in which a rotatable electron-donating N,N-dimethylaniline group attached to its 4-position. This molecular structure endowed NBDNI with aggregate-induced emission (AIE) and twisted intramolecular charge transfer (TICT) properties, enabling remarkable fluorescence changes in response to multiple external stimuli: (i) sensitivity to polarity in various solvent systems and polymer matrix; (ii) significant fluorescence response and excellent linearity towards temperature changes in solution; (iii) distinct switch of fluorescence color upon acid and base treatments; (iv) reversible mechanochromism behavior in the solid state. Moreover, the mechanisms underlying the aforementioned stimuli-responsive phenomena have been proposed based on comprehensive systematic measurements. Furthermore, preliminary applications such as fluorescence thermometry and acid/base test paper have been demonstrated. This research will bring about new opportunities for the development of novel stimuli-responsive luminescent materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa