Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Rep ; 42(3): 575-585, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36624204

RESUMO

KEY MESSAGE: A highly efficient transformation procedure to generate transgenic Stylosanthes roots was established. SgEXPB1 is involved in Stylosanthes root growth under phosphorus deficiency. Stylo (Stylosanthes spp.) is an important forage legume widely applied in agricultural systems in the tropics. Due to the recalcitrance of stylo genetic transformation, functional characterization of candidate genes involved in stylo root growth is limited. This study established an efficient procedure for Agrobacterium rhizogenes-mediated transformation for generating transgenic composite plants of S. guianensis cultivar 'Reyan No. 5'. Results showed that composite stylo plants with transgenic hairy roots were efficiently generated by A. rhizogenes strains K599 and Arqual, infecting the residual hypocotyl at 1.0 cm of length below the cotyledon leaves of 9-d-old seedlings, leading to a high transformation efficiency of > 95% based on histochemical ß-glucuronidase (GUS) staining. Notably, 100% of GUS staining-positive hairy roots can be achieved per composite stylo plant. Subsequently, SgEXPB1, a ß-expansin gene up-regulated by phosphorus (P) deficiency in stylo roots, was successfully overexpressed in hairy roots. Analysis of hairy roots showed that root growth and P concentration in the transgenic composite plants were increased by SgEXPB1 overexpression under low-P treatment. Taken together, a highly efficient A. rhizogenes-mediated transformation procedure for generating composite stylo plants was established to study the function of SgEXPB1, revealing that this gene is involved in stylo root growth during P deficiency.


Assuntos
Fabaceae , Fósforo , Plantas Geneticamente Modificadas/genética , Fósforo/farmacologia , Fabaceae/genética , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas , Transformação Genética
3.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569806

RESUMO

Low phosphorus (P) is a major limiting factor for plant growth in acid soils, which are preferred by tea plants. This study aims to investigate the unique mechanisms of tea plant roots adaptation to low-P conditions. Tea plant roots were harvested for multi-omics analysis after being treated with 0 µmol·L-1 P (0P) and 250 µmol·L-1 P (250P) for 30 days. Under 250P conditions, root elongation was significantly inhibited, and the density of lateral roots was dramatically increased. This suggests that 250P may inhibit the elongation of tea plant roots. Moreover, the P concentration in roots was about 4.58 times higher than that under 0P, indicating that 250P may cause P toxicity in tea plant roots. Contrary to common plants, the expression of CsPT1/2 in tea plant roots was significantly increased by four times at 250P, which indicated that tea plant roots suffering from P toxicity might be due to the excessive expression of phosphate uptake-responsible genes under 250P conditions. Additionally, 94.80% of P-containing metabolites accumulated due to 250P stimulation, most of which were energy-associated metabolites, including lipids, nucleotides, and sugars. Especially the ratio of AMP/ATP and the expression of energy sensor CsSnRKs were inhibited by P application. Therefore, under 250P conditions, P over-accumulation due to the excessive expression of CsPT1/2 may inhibit energy metabolism and thus the growth of tea plant roots.


Assuntos
Camellia sinensis , Fósforo , Fósforo/metabolismo , Multiômica , Raízes de Plantas/metabolismo , Fosfatos/metabolismo , Chá/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902267

RESUMO

Senna tora is one of the homologous crops used as a medicinal food containing an abundance of anthraquinones. Type III polyketide synthases (PKSs) are key enzymes that catalyze polyketide formation; in particular, the chalcone synthase-like (CHS-L) genes are involved in anthraquinone production. Tandem duplication is a fundamental mechanism for gene family expansion. However, the analysis of the tandem duplicated genes (TDGs) and the identification and characterization of PKSs have not been reported for S. tora. Herein, we identified 3087 TDGs in the S. tora genome; the synonymous substitution rates (Ks) analysis indicated that the TDGs had recently undergone duplication. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the type III PKSs were the most enriched TDGs involved in the biosynthesis of the secondary metabolite pathways, as evidenced by 14 tandem duplicated CHS-L genes. Subsequently, we identified 30 type III PKSs with complete sequences in the S. tora genome. Based on the phylogenetic analysis, the type III PKSs were classified into three groups. The protein conserved motifs and key active residues showed similar patterns in the same group. The transcriptome analysis showed that the chalcone synthase (CHS) genes were more highly expressed in the leaves than in the seeds in S. tora. The transcriptome and qRT-PCR analysis showed that the CHS-L genes had a higher expression in the seeds than in other tissues, particularly seven tandem duplicated CHS-L2/3/5/6/9/10/13 genes. The key active-site residues and three-dimensional models of the CHS-L2/3/5/6/9/10/13 proteins showed slight variation. These results indicated that the rich anthraquinones in S. tora seeds might be ascribed to the PKSs' expansion from tandem duplication, and the seven key CHS-L2/3/5/6/9/10/13 genes provide candidate genes for further research. Our study provides an important basis for further research on the regulation of anthraquinones' biosynthesis in S. tora.


Assuntos
Aciltransferases , Policetídeo Sintases , Filogenia , Policetídeo Sintases/metabolismo , Aciltransferases/genética , Antraquinonas/metabolismo
5.
Genomics ; 113(1 Pt 2): 728-735, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053410

RESUMO

Pigeonpea is the main protein source for more than one billion people, and it shows a strong adaptation to biotic stress and abiotic stress. Gene duplication is a fundamental process in genome evolution. Although the draft sequence of the pigeonpea genome has been available since 2011, further analysis of tandem duplicated genes (TDGs) and their contribution to the evolution of pigeonpea has not been reported. In this study, we identify 3211 TDGs in the pigeonpea genome and KEGG enrichment analysis of these genes shows that the TDGs are significantly enriched in resistance-related pathways. In addition, we find that TDGs are more abundant in retrotransposon-related genes in pigeonpea than in the other species included in our study. These results indicate that stress resistance in pigeonpea may be ascribed to resistance-related pathways and retrotransposons originating from tandem duplications. Our study will provide an important basis for further research in pigeonpea breeding.


Assuntos
Cajanus/genética , Duplicação Gênica , Estresse Fisiológico , Cajanus/metabolismo , Genoma de Planta
6.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012343

RESUMO

Crop growth and yield often face sophisticated environmental stresses, especially the low availability of mineral nutrients in soils, such as deficiencies of nitrogen, phosphorus, potassium, and others. Thus, it is of great importance to understand the mechanisms of crop response to mineral nutrient deficiencies, as a basis to contribute to genetic improvement and breeding of crop varieties with high nutrient efficiency for sustainable agriculture. With the advent of large-scale omics approaches, the metabolome based on mass spectrometry has been employed as a powerful and useful technique to dissect the biochemical, molecular, and genetic bases of metabolisms in many crops. Numerous metabolites have been demonstrated to play essential roles in plant growth and cellular stress response to nutrient limitations. Therefore, the purpose of this review was to summarize the recent advances in the dissection of crop metabolism responses to deficiencies of mineral nutrients, as well as the underlying adaptive mechanisms. This review is intended to provide insights into and perspectives on developing crop varieties with high nutrient efficiency through metabolite-based crop improvement.


Assuntos
Nitrogênio , Fósforo , Metaboloma , Minerais , Nitrogênio/metabolismo , Nutrientes/análise , Fósforo/metabolismo , Melhoramento Vegetal , Potássio
7.
BMC Plant Biol ; 21(1): 466, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645406

RESUMO

BACKGROUND: Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. RESULTS: In this study, differences in low-P stress tolerance were investigated using two stylo cultivars ('RY2' and 'RY5') that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. CONCLUSIONS: This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


Assuntos
Adaptação Fisiológica/genética , Deficiências Nutricionais/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Fósforo/deficiência , Transcriptoma , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
8.
BMC Genomics ; 21(1): 861, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272205

RESUMO

BACKGROUND: As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. RESULTS: Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 µM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves. Furthermore, the C2H2 and MYB transcription factors were predicted to be involved in the transcriptional regulation of genes that participate in secondary metabolism in stylo during Mn exposure. Interestingly, the activation of secondary metabolism-related genes probably resulted in increased levels of secondary metabolites, including total phenols, flavonoids, tannins and anthocyanidins. CONCLUSIONS: Taken together, this study reveals the roles of secondary metabolism in the adaptive responses of stylo to Mn toxicity, which is probably regulated by specific transcription factors.


Assuntos
Fabaceae , Manganês , Fabaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Manganês/toxicidade , Folhas de Planta , Metabolismo Secundário/genética , Transcriptoma
9.
BMC Plant Biol ; 20(1): 85, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087672

RESUMO

BACKGROUND: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


Assuntos
Fabaceae/metabolismo , Metaboloma , Compostos de Fósforo/metabolismo , Fósforo/deficiência , Raízes de Plantas/metabolismo , Fabaceae/genética , Expressão Gênica , Genes de Plantas , Solo/química
10.
BMC Genet ; 21(1): 86, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787786

RESUMO

BACKGROUND: Stenotaphrum secundatum is an important grass with a rich variety of accessions and great potential for development as an economically valuable crop. However, little is known about the genetic diversity of S. secundatum, limiting its application and development as a crop. Here, to provide a theoretical basis for further conservation, utilization, and classification of S. secundatum germplasm resources, we used phenotypic and molecular markers (single-nucleotide polymorphisms, SNPs; sequence-related amplified polymorphism, SRAP; inter-simple sequence repeat, ISSR) to analyze the genetic diversity of 49 S. secundatum accessions. RESULTS: Based on seven types of phenotypic data, the 49 S. secundatum accessions could be divided into three classes with great variation. We identified 1,280,873 SNPs in the 49 accessions, among which 66.22% were transition SNPs and 33.78% were transversion SNPs. Among these, C/T was the most common (19.12%) and G/C the least common (3.68%). Using 28 SRAP primers, 267 polymorphic bands were detected from the 273 bands amplified. In addition, 27 ISSR markers generated 527 amplification bands, all of which were polymorphic. Both marker types revealed a high level of genetic diversity, with ISSR markers showing a higher percentage of polymorphic loci (100%) than SRAP markers (97.8%). The genetic diversity of the accessions based on SRAP markers (h = 0.47, I = 0.66) and ISSR markers (h = 0.45, I = 0.64) supports the notion that the S. secundatum accessions are highly diverse. S. secundatum could be divided into three classes based on the evaluated molecular markers. CONCLUSIONS: Phenotypic and molecular marker analysis using SNP, SRAP, and ISSR markers revealed great genetic variation among S. secundatum accessions, which were consistently divided into three classes. Our findings provide a theoretical basis for the genetic diversity and classification of S. secundatum. Our results indicate that SNP, SRAP and ISSR markers are reliable and effective for analyzing genetic diversity in S. secundatum. The SNPs identified in this study could be used to distinguish S. secundatum accessions.


Assuntos
Marcadores Genéticos , Fenótipo , Poaceae/genética , DNA de Plantas/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
11.
BMC Plant Biol ; 19(1): 212, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31113380

RESUMO

BACKGROUND: Manganese (Mn), an essential element for plants, can be toxic when present in excess. Stylo (Stylosanthes) is a pioneer tropical legume with great potential for Mn tolerance, but its Mn tolerance mechanisms remain poorly understood. RESULTS: In this study, variations in Mn tolerance were observed among nine stylo genotypes. Stylo genotype 'RY5' exhibited the highest Mn tolerance compared to the other tested genotypes, whereas 'TF2001' was a Mn-sensitive genotype. The mechanisms underlying the response of stylo to Mn toxicity were further investigated using these two genotypes with contrasting Mn tolerance. Results showed that stylo genotype RY5 exhibited Mn tolerance superior to that of genotype TF2001, showing lower reductions in leaf chlorophyll concentration, chlorophyll fluorescence parameters, photosynthetic indexes and plant dry weight under Mn toxicity. A label-free quantitative proteomic analysis was conducted to investigate the protein profiles in the leaves and roots of RY5 in response to Mn toxicity. A total of 356 differentially expressed proteins (DEPs) were identified, including 206 proteins from leaves and 150 proteins from roots, which consisted of 71 upregulated, 62 downregulated, 127 strongly induced and 96 completely suppressed proteins. These DEPs were mainly involved in defense response, photosynthesis, carbon fixation, metabolism, cell wall modulation and signaling. The qRT-PCR analysis verified that 10 out of 12 corresponding gene transcription patterns correlated with their encoding proteins after Mn exposure. Finally, a schematic was constructed to reveal insights into the molecular processes in the leaves and roots of stylo in response to Mn toxicity. CONCLUSIONS: These findings suggest that stylo plants may cope with Mn toxicity by enhancing their defense response and phenylpropanoid pathways, adjusting photosynthesis and metabolic processes, and modulating protein synthesis and turnover. This study provides a platform for the future study of Mn tolerance mechanisms in stylo and may lead to a better understanding of the potential mechanisms underlying tropical legume adaptation to Mn toxicity.


Assuntos
Fabaceae/fisiologia , Manganês/toxicidade , Proteínas de Plantas/genética , Proteoma/genética , Fabaceae/genética , Genótipo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
12.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615142

RESUMO

Manganese (Mn) is an essential element for plant growth due to its participation in a series of physiological and metabolic processes. Mn is also considered a heavy metal that causes phytotoxicity when present in excess, disrupting photosynthesis and enzyme activity in plants. Thus, Mn toxicity is a major constraint limiting plant growth and production, especially in acid soils. To cope with Mn toxicity, plants have evolved a wide range of adaptive strategies to improve their growth under this stress. Mn tolerance mechanisms include activation of the antioxidant system, regulation of Mn uptake and homeostasis, and compartmentalization of Mn into subcellular compartments (e.g., vacuoles, endoplasmic reticulum, Golgi apparatus, and cell walls). In this regard, numerous genes are involved in specific pathways controlling Mn detoxification. Here, we summarize the recent advances in the mechanisms of Mn toxicity tolerance in plants and highlight the roles of genes responsible for Mn uptake, translocation, and distribution, contributing to Mn detoxification. We hope this review will provide a comprehensive understanding of the adaptive strategies of plants to Mn toxicity through gene regulation, which will aid in breeding crop varieties with Mn tolerance via genetic improvement approaches, enhancing the yield and quality of crops.


Assuntos
Transporte Biológico/efeitos dos fármacos , Manganês/toxicidade , Metais Pesados/toxicidade , Plantas/genética , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Homeostase/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Plantas/efeitos dos fármacos
13.
Plant Cell Environ ; 41(12): 2821-2834, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30066375

RESUMO

As a major component of soil organic phosphorus (P), phytate-P is unavailable to plants unless hydrolysed by phytase to release inorganic phosphate. However, knowledge on natural variation in root-associated phytase activity and its underlying molecular mechanisms in plants remains fragmentary. In this study, variations in root internal and associated phytase activity were observed among 39 genotypes of Stylosanthes guianensis (Stylo), which is well adapted to acid soils. Furthermore, TPRC2001-1, the genotype with the highest root-associated phytase activity, was more capable of utilizing extracellular phytate-P than Fine-stem, the genotype with the lowest root-associated phytase activity. After protein liquid chromatography-tandem mass spectrometry analysis, a purple acid phosphatase (PAP), SgPAP23, was identified and cloned from TPRC2001-1. SgPAP23 exhibited high activity against phytate-P and was mainly localized on the plasma membrane. Furthermore, SgPAP23 overexpression resulted in significant increases of root-associated phytase activity and thus facilitated extracellular phytate-P utilization in both bean (Phaseolus vulgaris) hairy roots and Arabidopsis thaliana. The results herein support the conclusion that SgPAP23 is a primary contributor to the superior extracellular phytate-P utilization in stylo and thus is used to develop cultivars with efficient extracellular phytate-P utilization.


Assuntos
Fosfatase Ácida/metabolismo , Fabaceae/enzimologia , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , 6-Fitase/metabolismo , Arabidopsis , Cromatografia Líquida , Clonagem Molecular , Fabaceae/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
14.
Int J Mol Sci ; 18(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788047

RESUMO

Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under salt stress in this study. Two-dimensional electrophoresis (2-DE) and mass spectrometry were conducted to investigate protein profiles in rhizobia exposed to salt stress. Subsequently, salt tolerance in stylo (Stylosanthesguianensis) inoculated with rhizobia was further detected in hydroponics. Results showed that the Bradyrhizobium strain RJS9-2 exhibited higher salt tolerance than the other three Bradyrhizobium strains. RJS9-2 was able to grow at 0.35 M NaCl treatment, while the other three Bradyrhizobium strains did not grow at 0.1 M NaCl treatment. Salt stress induced IAA production, and accumulation of proline, betaine, ectoine, and trehalose was observed in RJS9-2 but not in PN13-1. Proteomics analysis identified 14 proteins regulated by salt stress in RJS9-2 that were mainly related to the ABC transporter, stress response, and protein metabolism. Furthermore, under saline conditions, the nodule number, plant dry weight, and N concentration in stylo plants inoculated with RJS9-2 were higher than those in plants inoculated with PN13-1. These results suggest that the tolerance of RJS9-2 to salt stress may be achieved by the coordination of indole-3-acetic acid (IAA) production, osmoprotectant accumulation, and protein expression, thus promoting stylo growth.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Salinidade , Tolerância ao Sal , Proteínas de Bactérias , Fabaceae/metabolismo , Ácidos Indolacéticos/metabolismo , Viabilidade Microbiana , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
15.
Plant Physiol ; 167(1): 176-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378694

RESUMO

Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels.


Assuntos
Fabaceae/fisiologia , Malato Desidrogenase/fisiologia , Malatos/metabolismo , Manganês/toxicidade , Adaptação Fisiológica/fisiologia , Fabaceae/enzimologia , Fabaceae/metabolismo , Malato Desidrogenase/efeitos dos fármacos , Doenças das Plantas/induzido quimicamente , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteômica
16.
J Exp Bot ; 67(14): 4141-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194738

RESUMO

Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.


Assuntos
Fosfatase Ácida/metabolismo , Desoxirribonucleotídeos/metabolismo , Fabaceae/enzimologia , Glicoproteínas/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/fisiologia , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Glicoproteínas/genética , Glicoproteínas/fisiologia , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo
17.
New Phytol ; 202(1): 209-219, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24325195

RESUMO

Stylosanthes (stylo) is a dominant leguminous forage in the tropics. Previous studies suggest that stylo has great potential for aluminium (Al) tolerance, but little is known about the underlying mechanism. A novel malic enzyme, SgME1, was identified from the Al-tolerant genotype TPRC2001-1 after 72 h Al exposure by two-dimensional electrophoresis, and the encoding gene was cloned and characterized via heterologous expression in yeast, Arabidopsis thaliana and bean (Phaseolus vulgaris) hairy roots. Internal Al detoxification might be mainly responsible for the 72 h Al tolerance of TPRC2001-1, as indicated by 5.8-fold higher root malate concentrations and approximately two-fold higher Al concentrations in roots and root symplasts of TPRC2001-1 than those of the Al-sensitive genotype Fine-stem. An accompanying increase in malate secretion might also reduce a fraction of Al uptake in TPRC2001-1. Gene and protein expression of SgME1 was only enhanced in TPRC2001-1 after 72 h Al exposure. Overexpressing SgME1 enhanced malate synthesis and rescued yeast, A. thaliana and bean hairy roots from Al toxicity via increasing intracellular malate concentrations and/or accompanied malate exudation. These results provide strong evidence that superior Al tolerance of stylo is mainly conferred by Al-enhanced malate synthesis, functionally controlled by SgME1.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Fabaceae/enzimologia , Fabaceae/fisiologia , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Eletroforese em Gel Bidimensional , Fabaceae/efeitos dos fármacos , Fabaceae/genética , Genótipo , Malato Desidrogenase/isolamento & purificação , Oryza/efeitos dos fármacos , Oryza/fisiologia , Fenótipo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia
18.
Int J Mol Sci ; 15(10): 19134-46, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338051

RESUMO

Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260-1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53-0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.


Assuntos
Cynodon/genética , DNA de Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Polimorfismo Genético/genética , Cruzamento/métodos , China , Análise por Conglomerados , Filogenia , Análise de Sequência/métodos
19.
Hortic Res ; 11(9): uhae201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257540

RESUMO

Pigeonpea (Cajanus cajan) is a nutrient-rich and versatile food legume crop of tropical and subtropical regions. In this study, we describe the de novo assembly of a high-quality genome for the ancient pigeonpea landrace 'D30', achieved through a combination of Pacific Biosciences high-fidelity (PacBio HiFi) and high-throughput chromatin conformation capture (Hi-C) sequencing technologies. The assembled 'D30' genome has a size of 813.54 Mb, with a contig N50 of 10.74 Mb, a scaffold N50 of 73.07 Mb, and a GC content of 35.67%. Genomic evaluation revealed that the 'D30' genome contains 99.2% of Benchmarking Universal Single-Copy Orthologs (BUSCO) and achieves a 29.06 long terminal repeat (LTR) assembly index (LAI). Genome annotation indicated that 'D30' encompasses 431.37 Mb of repeat elements (53.02% of the genome) and 37 977 protein-coding genes. Identification of single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations between 'D30' and the published genome of pigeonpea cultivar 'Asha' suggests that genes affected by these variations may play important roles in biotic and abiotic stress responses. Further investigation of genomic regions under selection highlights genes enriched in starch and sucrose metabolism, with 42.11% of these genes highly expressed in seeds. Finally, we conducted genome-wide association studies (GWAS) to facilitate the identification of 28 marker-trait associations for six agronomic traits of pigeonpea. Notably, we discovered a calmodulin-like protein (CcCML) that harbors a dominant haplotype associated with the 100-seed weight of pigeonpea. Our study provides a foundational resource for developing genomics-assisted breeding programs in pigeonpea.

20.
Int Urol Nephrol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958853

RESUMO

PURPOSE: This study compared the effects of calcium oxalate stones and uric acid stones on male sexual function. METHODS: We enrolled 100 patients with ureteral stones. According to the composition of the stones, they were divided into the calcium oxalate stone group and the uric acid stone group. All patients underwent ureteroscopic holmium laser lithotripsy. General data such as age, body mass index, course of disease, stone diameter, and degree of renal hydronephrosis were compared. Sperm parameters, including sperm density, sperm viability, and sperm deformity rate, as well as International Index of Erectile Function-5 questionnaire (IIEF-5) scores, and Quality of Life (QOL) scores, were measured and compared before and 6 weeks after the surgery. RESULTS: There were no statistically significant differences in general data and sperm parameters between the two groups before the surgery (P > 0.05). However, there were significantly lower IIEF scores but significantly higher QOL scores in the uric acid stone group. In the calcium oxalate stone group, there were no statistically significant differences in sperm parameters, IIEF score, and QOL score before and after the surgery (P > 0.05). In the uric acid stone group, there were no statistically significant differences in sperm parameters before and after surgery (P > 0.05), whereas there were significantly higher IIEF scores but significantly lower QOL scores after the surgery (P < 0.05). The prevalence of erectile dysfunction (ED) in the uric acid stone group was 38.18% (21/55), which was significantly higher compared to 20.00% (9/45) in the calcium oxalate stone group (P < 0.05). The multivariate binary logistic regression analysis showed that the independent risk factor related to ED was uric acid stones (odds ratio: 2.637, 95% confidence interval 1.040-6.689, P = 0.041). No statistically significant differences were found in sperm parameters between patients with and without ED. CONCLUSION: Compared with the calcium oxalate stone group, patients with uric acid stones had a higher prevalence of ED and poorer sexual performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa