Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834681

RESUMO

High-altitude pulmonary edema (HAPE) is a deadly form of altitude sickness, and there is no effective treatment for HAPE. Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cell isolated from dental pulp tissues and possess various functions, such as anti-inflammatory and anti-oxidative stress. DPSCs have been used to treat a variety of diseases, but there are no studies on treating HAPE. In this study, Sprague-Dawley rats were exposed to acute low-pressure hypoxia to establish the HAPE model, and SOD1-modified DPSCs (DPSCsHiSOD1) were administered through the tail vein. Pulmonary arterial pressure, lung water content (LWC), total lung protein content of bronchoalveolar lavage fluid (BALF) and lung homogenates, oxidative stress, and inflammatory indicators were detected to evaluate the effects of DPSCsHiSOD1 on HAPE. Rat type II alveolar epithelial cells (RLE-6TN) were used to investigate the effects and mechanism of DPSCsHiSOD1 on hypoxia injury. We found that DPSCs could treat HAPE, and the effect was better than that of dexamethasone treatment. SOD1 modification could enhance the function of DPSCs in improving the structure of lung tissue, decreasing pulmonary arterial pressure and LWC, and reducing the total lung protein content of BALF and lung homogenates, through anti-oxidative stress and anti-inflammatory effects. Furthermore, we found that DPSCsHiSOD1 could protect RLE-6TN from hypoxic injury by reducing the accumulation of reactive oxygen species (ROS) and activating the Nrf2/HO-1 pathway. Our findings confirm that SOD1 modification could enhance the anti-oxidative stress ability of DPSCs through the Nrf2/HO-1 signalling pathway. DPSCs, especially DPSCsHiSOD1, could be a potential treatment for HAPE. Schematic diagram of the antioxidant stress mechanism of DPSCs in the treatment of high-altitude pulmonary edema. DPSCs can alleviate oxidative stress by releasing superoxide dismutase 1, thereby reducing ROS production and activating the Nrf2/HO-1 signalling pathway to ameliorate lung cell injury in HAPE.

2.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221563

RESUMO

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
3.
Nitric Oxide ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830571

RESUMO

Endogenous hydrogen sulfide (H2S) plays an important role in bone metabolism. However, the exact role of H2S in intestinal calcium and phosphorus absorption and its potential in preventing and treating primary osteoporosis remains unknown. Therefore, this study aimed to investigate the potential of H2S in promoting intestinal calcium and phosphorus absorption and alleviating primary osteoporosis. We measured the apparent absorptivity of calcium, femoral bone density, expression and sulfhydration of the duodenal endoplasmic reticulum protein of 57 kDa (ERp57), duodenal cystathionine γ-lyase (CSE) expression, and serum H2S content in adult and old CSE-knockout and wild-type mice. We also assessed intracellular reactive oxygen species (ROS) and Ca2+ content in CSE-overexpressing or knockout intestinal epithelial cell (IEC)-6 cells. In senile mice, CSE knockout decreased endogenous H2S, ERp57 sulfhydration, and intestinal calcium absorption and worsened osteoporosis, which were partially reversed by GYY4137, an H2S donor. CSE overexpression in IEC-6 cells increased ERp57 sulfhydration, protein kinase A and C activity, and intracellular Ca2+, whereas CSE knockout exerted the opposite effects. Furthermore, hydrogen peroxide (H2O2) stimulation had similar effects as in CSE knockout, which were reversed by pretreatment with sodium hydrosulfide before H2O2 stimulation and restored by DL-dithiothreitol. These findings suggest that H2S attenuates primary osteoporosis by preventing ROS-induced ERp57 damage in intestinal epithelial cells by enhancing ERp57 activity and promoting intestinal calcium absorption, thereby aiding in developing therapeutic interventions to prevent osteoporosis.

4.
Drug Resist Updat ; 66: 100913, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603431

RESUMO

AIMS: Chemoresistance remains a major challenge in gastric cancer (GC). Chromodomain helicase DNA-binding protein 4 (CHD4) mediated chromatin remodeling plays critical roles in various tumor types, but its role in chemoresistance in GC remains uncharacterized. METHODS: CHD4 expression was examined by immunohistochemistry and Western blotting. The role of CHD4 on cell proliferation and chemoresistance of GC was examined in vitro and in vivo. Immunoprecipitation and liquid chromatography-mass spectrometry were used to identify CHD4-binding proteins and a proximity ligation assay was used to explore protein-protein interaction. RESULTS: Chemoresistance is associated with upregulation of CHD4 in the tumor tissues of GC patients. Overexpression of CHD4 increased chemoresistance and cell proliferation. Knockdown of CHD4 induced cell apoptosis and cell cycle arrest. CHD4 mediates the decrease of the intracellular concentration of cisplatin by inducing drug efflux. Additionally, CHD4 promotes the interaction between ERK1/2 and MEK1/2, resulting in continuous activation of MEK/ERK pathway. Knockdown of CHD4 in GC increased sensitivity to chemotherapy and suppressed tumor growth in a mouse xenograft model. CONCLUSIONS: This study identifies CHD4 dominated multi-drug efflux as a promising therapeutic target for overcoming acquired chemoresistance in GC.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Camundongos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
5.
Angew Chem Int Ed Engl ; 63(5): e202315795, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38065838

RESUMO

Valorization of biomass-derived polyols into high-value-added ethanolamines and ethylenediamines is highly attractive. Herein, we report a one-step photocatalytic protocol to convert bio-polyols into a 60 % yield of ethanolamines and ethylenediamines over a multifunctional Cu/TiO2 catalyst. This catalyst enables a tandem process of photocatalytic polyol C-C bond cleavage and reductive amination in one pot at room temperature, and also allows the selective conversion of various bio-polyols and amines. Mechanistic studies revealed that photogenerated holes in TiO2 promote the retro-aldol C-C bond cleavage or oxidative dehydrogenation of polyols, and photogenerated electrons accumulate on small-sized Cu clusters, which facilitate the reductive amination via hydrogen transfer and prevent the H2 generation. This strategy provides new opportunities for the development of non-noble metal photocatalysts and methods of biomass conversion under mild conditions.

6.
Small ; 19(34): e2300104, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186509

RESUMO

Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T2 -weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.


Assuntos
Cobalto , Gossipol , Neoplasias , Humanos , Apoptose , Linhagem Celular Tumoral , Cobalto/farmacologia , Cobalto/uso terapêutico , Gossipol/farmacologia , Gossipol/uso terapêutico , Neoplasias/tratamento farmacológico
7.
Cell Immunol ; 386: 104703, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889216

RESUMO

Epigenetic regulation affects the development and differentiation of iNKT cells. Our previous study found that the number of iNKT cells in thymus of RA mice was reduced and the ratio of subsets was unbalanced, but the related mechanism remains unclear. We adopted an adoptive infusion of iNKT2 cells with specific phenotypes and functions to RA mice and used the α-Galcer treatment group as control. The findings revealed that: 1. Adoptive treatment of iNKT cells decreased the proportion of iNKT1 and iNKT17 subsets in the thymus of RA mice, and increased the proportion of iNKT2 subsets. 2. Following treatment with iNKT cells, the expression of PLZF in thymus DP T cells was increased whereas the expression of T-bet in thymus iNKT cells was decreased in RA mice. 3. Adoptive therapy reduced the modification levels of H3Kb7me3 and H3K4me3 in the promoter regions of Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet) gene in thymus DP T cells and iNKT cells, and the reduction of H3K4me3 was particularly significant in the cell treatment group. Furthermore, adoptive therapy also upregulated the expression of UTX (histone demethylase) in thymus lymphocytes of RA mice. As a result, it is hypothesized that adoptive therapy of iNKT2 cells may affect the level of histone methylation in the promoter region of important transcription factor genes for iNKT development and differentiation, thereby directly or indirectly correcting the imbalance of iNKT subsets in the thymus of RA mice. These findings offer a fresh rationale and concept for the management of RA that targets.


Assuntos
Epigênese Genética , Células T Matadoras Naturais , Camundongos , Animais , Células T Matadoras Naturais/metabolismo , Timo , Diferenciação Celular , Timócitos , Camundongos Endogâmicos C57BL
8.
J Biochem Mol Toxicol ; 37(10): e23438, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421170

RESUMO

To explore the effects of anti-programmed death-1 (PD-1) therapy on advanced colorectal cancer (CRC) based on the intestinal microecology. Ninety-two patients with advanced CRC were selected. Patients were treated with Apatinib alone or anti PD-1 treatment combined with Apatinib. The lactulose/mannitol (L/M) value of the urine was detected by high performance liquid chromatography. The changes of intestinal microflora were determined by real-time fluorescence quantitative PCR. The risk factors were analyzed through multivariate logistic regression analysis. The curative effect of anti PD-1 treatment combined with the Apatinib treatment (82.61%) was much higher than that of the Apatinib treatment alone (63.04%, p < 0.05). After treatment, the contents of Bifidobacterium, Lactobacillus, and Enterococcus faecalis were higher with lower levels of Escherichia coli in the observation group than the control (p < 0.05). The level of D-lactic acid and urinary L/M value of the urine in the observation group was lower than that in control after treatment (p < 0.001). The patients had a 3-year survival rate of 91.30%. Age >60 years old, histological types of mucinous adenocarcinoma and signet ring cell carcinoma, vascular tumor thrombus, nerve invasion, TNM stage of Ⅲ-Ⅳ were independent risk factors, and anti PD-1 treatment was the protective factor (p < 0.05). In advanced CRC patients receiving anti PD-1 treatment combined with the Apatinib treatment, the progression of advanced CRC was effectively controlled by maintaining the intestinal microflora balance. Anti PD-1 therapy can improve the living quality of CRC patients.


Assuntos
Neoplasias Colorretais , Humanos , Pessoa de Meia-Idade , Neoplasias Colorretais/patologia
9.
Platelets ; 34(1): 2157381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36597012

RESUMO

High-altitude polycythemia (HAPC) can occur in individuals who are intolerant to high-altitude hypoxia. In patients with HAPC, erythrocytosis is often accompanied by a decrease in platelet count. Chronic hypoxia can increase the incidence of arteriovenous thrombosis and the risk of bleeding during antithrombotic treatment due to thrombocytopenia; therefore, understanding the cause of thrombocytopenia can reduce the risk of treatment-related bleeding. In this study, we examined platelet production and apoptosis to understand the cause of thrombocytopenia in patients with HAPC. The classification of myeloid-derived megakaryocytes (MKs) in HAPC patients was mainly granular MKs rather than mature MKs, suggesting impaired differentiation and maturation. However, the total number of MKs and newly generated reticulated platelets in the peripheral blood increased, indicating sufficient platelet generation in HAPC thrombocytopenia. Increased platelet apoptosis may be one of the causes of thrombocytopenia. Platelet activation and GP1bα pathway activation induced by thrombin and von Willebrand factor can lead to platelet apoptosis. Platelet production was not reduced in patients with HAPC, whereas platelet apoptosis was associated with thrombocytopenia. These findings provide a rationale for considering the bleeding risk in HAPC patient while treating thrombotic diseases.


What is the context?Platelets are essential in the process of blood clotting; hence, low platelet count increases the risk of bleeding. Thrombocytopenia is present in patients with high-altitude polycythemiaHypoxia can lead to platelet activation and increase in procoagulant factors, while at the same time increase the risk of thrombosis due to erythrocytosis and blood stasis.Antithrombotic therapy should be administered when thrombosis occurs in patients with high altitude polycythemia; however, due to the low platelet count, risk of bleeding must be considered.What is new?In this study, we found that platelet production was not decreased in patients with high-altitude polycythemia.One cause of thrombocytopenia is apoptosis, which is associated with platelet activation, especially GP1bα activation.Inhibition of GP1bα binding to ligand decreased the level of platelet apoptosis.What is the impact?This study provides novel insights into antithrombotic therapy for patients with high-altitude polycythemia complicated by thrombosis.Thrombocytopenia is associated with excessive apoptosis.Interfering with GP1bα targets may have a dual benefit, both in inhibiting thrombosis and avoiding thrombocytopenia.


Assuntos
Doença da Altitude , Policitemia , Trombocitopenia , Humanos , Doença da Altitude/complicações , Doença da Altitude/metabolismo , Policitemia/complicações , Altitude , Hipóxia/complicações , Trombocitopenia/complicações
10.
Sheng Li Xue Bao ; 75(5): 714-726, 2023 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-37909142

RESUMO

Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta , Retardo do Crescimento Fetal/etiologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/patologia , Espécies Reativas de Oxigênio , Hipóxia/patologia , Complicações na Gravidez/patologia , Estresse do Retículo Endoplasmático
11.
Curr Issues Mol Biol ; 44(11): 5605-5621, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421664

RESUMO

In this study, 32 novel quinazolinone-scaffold-containing pyrazole carbamide derivatives were designed and synthesized in a search for a novel fungicide against Rhizoctonia solani. Single-crystal X-ray diffraction of 3-(difluoromethyl)-N-(2-((6,7-difluoro-4-oxoquinazolin-3(4H)-yl)methyl)phenyl)-1-methyl-1H-pyrazole-4-carboxamide (6a11) confirmed the structure of the target compounds. The in vitro antifungal activity of the target compounds against R. solani was evaluated at 100 µg/mL. The structure-activity relationship analysis results revealed that antifungal activity was highest when the substitution activity was at position 6. Moreover, the position and number of chlorine atoms directly affected the antifungal activity. Further in vitro bioassays revealed that 6a16 (EC50 = 9.06 mg/L) had excellent antifungal activity against R. solani that was higher than that of the commercial fungicide fluconazole (EC50 = 12.29 mg/L) but lower than that of bixafen (EC50 = 0.34 mg/L). Scanning electron microscopy), 7.33 (SEM) revealed that N-(2-((6,8-dichloro-4-oxoquinazolin-3(4H)-yl)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (6a16) also affected the mycelial morphology. The findings revealed that molecular hybridization was an effective tool for designing antifungal candidates. Meanwhile, pyrazolecarbamide derivatives bearing a quinazolinone fragment exhibited potential antifungal activity against R. solani.

12.
Brief Bioinform ; 21(2): 609-620, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30649184

RESUMO

Post-translational modification (PTM)-based regulation can be mediated not only by the modification of a single residue but also by the interplay of different modifications. Accurate prediction of PTM cross-talk is a highly challenging issue and is in its infant stage. Especially, less attention has been paid to the structural preferences (except intrinsic disorder and spatial proximity) of cross-talk pairs and the characteristics of individual residues involved in cross-talk, which may restrict the improvement of the prediction accuracy. Here we report a structure-based algorithm called PCTpred to improve the PTM cross-talk prediction. The comprehensive residue- and residue pair-based features were designed for paired PTM sites at the sequence and structural levels. Through feature selection, we reserved 23 newly introduced descriptors and 3 traditional descriptors to develop a sequence-based predictor PCTseq and a structure-based predictor PCTstr, both of which were integrated to construct our final prediction model. According to pair- and protein-based evaluations, PCTpred yielded area under the curve values of approximately 0.9 and 0.8, respectively. Even when removing the distance preference of samples or using the input of modeled structures, our prediction performance was maintained or moderately reduced. PCTpred displayed stable and reliable improvements over the state-of-the-art methods based on various evaluations. The source code and data set are freely available at https://github.com/Liulab-HZAU/PCTpred or http://liulab.hzau.edu.cn/PCTpred/.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/química , Algoritmos , Aprendizado de Máquina , Conformação Proteica
13.
PLoS Comput Biol ; 17(4): e1008951, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872313

RESUMO

The binding affinities of protein-nucleic acid interactions could be altered due to missense mutations occurring in DNA- or RNA-binding proteins, therefore resulting in various diseases. Unfortunately, a systematic comparison and prediction of the effects of mutations on protein-DNA and protein-RNA interactions (these two mutation classes are termed MPDs and MPRs, respectively) is still lacking. Here, we demonstrated that these two classes of mutations could generate similar or different tendencies for binding free energy changes in terms of the properties of mutated residues. We then developed regression algorithms separately for MPDs and MPRs by introducing novel geometric partition-based energy features and interface-based structural features. Through feature selection and ensemble learning, similar computational frameworks that integrated energy- and nonenergy-based models were established to estimate the binding affinity changes resulting from MPDs and MPRs, but the selected features for the final models were different and therefore reflected the specificity of these two mutation classes. Furthermore, the proposed methodology was extended to the identification of mutations that significantly decreased the binding affinities. Extensive validations indicated that our algorithm generally performed better than the state-of-the-art methods on both the regression and classification tasks. The webserver and software are freely available at http://liulab.hzau.edu.cn/PEMPNI and https://github.com/hzau-liulab/PEMPNI.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA/metabolismo , Algoritmos , Biologia Computacional , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Conjuntos de Dados como Assunto , Ligação Proteica/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética
14.
J Nat Prod ; 85(1): 196-204, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34978808

RESUMO

Salidroside (Sal), the major active constituent of Rhodiola rosea L., is considered as a potential pro-drug with various activities; however, its role in tumor therapy is not clear. Here, we demonstrated in vitro and in vivo that Sal enhanced the inhibitory activity of doxorubicin (DOX) in drug-resistant cancer cell lines. Our results showed that combination drug treatment (Sal and DOX) significantly decreased cell proliferation, migration, and motility. Besides biological validation, a luciferase-labeled animal tumor xenograft model and bioluminescence imaging (BLI) were applied for assessing the tumor progression. Sal combined with DOX inhibited the growth of HeLa-ADR-luc cells in vivo and downregulated the DOX-induced high expression of MDR1. Also, Sal downregulated the Bcl-2, MMP-2, MMP-9, PI3K, and AKT and upregulated BAX proteins. Sal demonstrated high safety and cardiac protection activity. We discovered that Sal enhances DOX sensitivity through the regulation of PI3K/Akt/HIF-1α and DOX-induced resistance pathways. Our results suggest that Sal could be a novel chemosensitization agent for the treatment of multi-drug-resistance tumors.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucosídeos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fenóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos
15.
J Nanobiotechnology ; 20(1): 280, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705974

RESUMO

BACKGROUND: As an antioxidant, hydrogen (H2) can selectively react with the highly toxic hydroxyl radical (·OH) in tumor cells to break the balance of reactive oxygen species (ROS) and cause oxidative stress. However, due to the high diffusibility and storage difficulty of hydrogen, it is impossible to achieve long-term release at the tumor site, which highly limited their therapeutic effect. RESULTS: Photosynthetic bacteria (PSB) release a large amount of hydrogen to break the balance of oxidative stress. In addition, as a nontoxic bacterium, PSB could stimulate the immune response and increase the infiltration of CD4+ and CD8+ T cells. More interestingly, we found that hydrogen therapy induced by our live PSB did not lead to the up-regulation of PD-L1 after stimulating the immune response, which could avoid the tumor immune escape. CONCLUSION: Hydrogen-immunotherapy significantly kills tumor cells. We believe that our live microbial hydrogen production system provides a new strategy for cancer hydrogen treatment combining with enhanced immunotherapy without up-regulating PD-L1.


Assuntos
Antígeno B7-H1 , Neoplasias , Linfócitos T CD8-Positivos , Humanos , Hidrogênio/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico
16.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409005

RESUMO

Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson's disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5'-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5'-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11-17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.


Assuntos
Vesículas Sinápticas , Fatores de Transcrição , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Fatores de Transcrição/metabolismo
17.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897856

RESUMO

Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.


Assuntos
Polissacarídeos , Chá , Antioxidantes/farmacologia , Hipoglicemiantes , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
18.
Gene Ther ; 28(7-8): 413-421, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32203196

RESUMO

Critical roles of several microRNAs have been implicated in atherosclerosis (AS). In this study, we studied the functional role of miR-140-5p in AS. An AS model was constructed in THP-1 macrophages challenged with oxidized low-density lipoprotein (ox-LDL). The expression of miR-140-5p was up- or downregulated with corresponding mimic or inhibitor regents. Our experiments showed that the levels of cell apoptosis and fatty acid accumulation were decreased in THP-1 macrophages treated with miR-140-5p mimic, whereas increased in those treated with miR-140-5p inhibitor. The levels of ROS (reactive oxygen species), MDA (malondialdehyde), TC (Triglyceride), and TG (total cholesterol) were reduced and the level of SOD (superoxide dismutase) was improved in miR-140-5p overexpressed THP-1 macrophages, which can be reversed with miR-140-5p depletion. Moreover, through bioinformatics analysis, we found toll-like receptor 4 (TLR4) was a potential target of miR-140-5p. Luciferase reporter assay demonstrated that miR-140-5p regulated TLR4 expression via binding 3'UTR of TLR4 in THP-1 macrophages. In ox-LDL challenged THP-1 macrophages, the expression of TLR4 was decreased after miR-140-5p mimic transfection, whereas improved after treatment with miR-140-5p inhibitors. As a conclusion, miR-140-5p can participate in inhibiting ox-LDL-induced oxidative stress and cell apoptosis via targeting TLR4 in macrophage-mediated ox-LDL induced AS.


Assuntos
Apoptose , MicroRNAs , Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Lipoproteínas LDL/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Células THP-1 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
19.
Theor Appl Genet ; 134(2): 557-572, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128073

RESUMO

KEY MESSAGE: Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype. Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Setaria (Planta)/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Setaria (Planta)/anatomia & histologia , Setaria (Planta)/crescimento & desenvolvimento
20.
Theor Appl Genet ; 134(9): 3023-3036, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081150

RESUMO

KEY MESSAGE: Multi-environment QTL mapping identified 23 stable loci and 34 co-located QTL clusters for panicle architecture and grain yield-related traits, which provide a genetic basis for foxtail millet yield improvement. Panicle architecture and grain weight, both of which are influenced by genetic and environmental factors, have significant effects on grain yield potential. Here, we used a recombinant inbred line (RIL) population of 333 lines of foxtail millet, which were grown in 13 trials with varying environmental conditions, to identify quantitative trait loci (QTL) controlling nine agronomic traits related to panicle architecture and grain yield. We found that panicle weight, grain weight per panicle, panicle length, panicle diameter, and panicle exsertion length varied across different geographical locations. QTL mapping revealed 159 QTL for nine traits. Of the 159 QTL, 34 were identified in 2 to 12 environments, suggesting that the genetic control of panicle architecture in foxtail millet is sensitive to photoperiod and/or other environmental factors. Eighty-eight QTL controlling different traits formed 34 co-located QTL clusters, including the triple QTL cluster qPD9.2/qPL9.5/qPEL9.3, which was detected 23 times in 13 environments. Several candidate genes, including Seita.2G388700, Seita.3G136000, Seita.4G185300, Seita.5G241500, Seita.5G243100, Seita.9G281300, and Seita.9G342700, were identified in the genomic intervals of multi-environmental QTL or co-located QTL clusters. Using available phenotypic and genotype data, we conducted haplotype analysis for Seita.2G002300 and Seita.9G064000,which showed high correlations with panicle weight and panicle exsertion length, respectively. These results not only provided a basis for further fine mapping, functional studies and marker-assisted selection of traits related to panicle architecture in foxtail millet, but also provide information for comparative genomics analyses of cereal crops.


Assuntos
Cromossomos de Plantas/genética , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Setaria (Planta)/fisiologia , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Setaria (Planta)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa