Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003317

RESUMO

Ivermectin is a an anti-helminthic that is critical globally for both human and veterinary care. To the best of our knowledge, information available regarding the influence of ivermectin (IVM) on the gut microbiota has only been collected from diseased donors, who were treated with IVM alone or in combination with other medicines. Results thus obtained were influenced by multiple elements beyond IVM, such as disease, and other medical treatments. The research presented here investigated the impact of IVM on the gut microbial structure established in a Triple-SHIME® (simulator of the human intestinal microbial ecosystem), using fecal material from three healthy adults. The microbial communities were grown using three different culture media: standard SHIME media and SHIME media with either soluble or insoluble fiber added (control, SF, ISF). IVM introduced minor and temporary changes to the gut microbial community in terms of composition and metabolite production, as revealed by 16S rRNA amplicon sequencing analysis, flow cytometry, and GC-MS. Thus, it was concluded that IVM is not expected to induce dysbiosis or yield adverse effects if administered to healthy adults. In addition, the donor's starting community influences the relationship between IVM and the gut microbiome, and the soluble fiber component in feed could protect the gut microbiota from IVM; an increase in short-chain fatty acid production was predicted by PICRUSt2 and detected with IVM treatment.


Assuntos
Microbioma Gastrointestinal , Ivermectina , Adulto , Humanos , Fezes , Microbioma Gastrointestinal/genética , Ivermectina/farmacologia , RNA Ribossômico 16S/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361763

RESUMO

The consumption of probiotics is widely encouraged due to reports of their positive effects on human health. In particular, Lacticaseibacillus rhamnosus strain GG (LGG) is an approved probiotic that has been reported to improve health outcomes, especially for gastrointestinal disorders. However, how LGG cooperates with the gut microbiome has not been fully explored. To understand the interaction between LGG and its ability to survive and grow within the gut microbiome, this study introduced LGG into established microbial communities using an in vitro model of the colon. LGG was inoculated into the simulated ascending colon and its persistence in, and transit through the subsequent transverse and descending colon regions was monitored over two weeks. The impact of LGG on the existing bacterial communities was investigated using 16S rRNA sequencing and short-chain fatty acid analysis. LGG was able to engraft and proliferate in the ascending region for at least 10 days but was diminished in the transverse and descending colon regions with little effect on short-chain fatty acid abundance. These data suggest that the health benefits of the probiotic LGG rely on its ability to transiently engraft and modulate the host microbial community.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos , Humanos , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis
3.
Appl Microbiol Biotechnol ; 105(8): 3353-3367, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33765200

RESUMO

The importance of the gut microbiota in human health and disease progression makes it a target for research in both the biomedical and nutritional fields. To date, a number of in vitro systems have been designed to recapitulate the gut microbiota of the colon ranging in complexity from the application of a single vessel to cultivate the community in its entirety, to multi-stage systems that mimic the distinct regional microbial communities that reside longitudinally through the colon. While these disparate types of in vitro designs have been employed previously, information regarding similarities and differences between the communities that develop within was less defined. Here, a comparative analysis of the population dynamics and functional production of short-chain fatty acids (SCFAs) was performed using the gut microbiota of the same donor cultured using a single vessel and a 3-stage colon system. The results found that the single vessel communities maintained alpha diversity at a level comparable to the distal regions of the 3-stage colon system. Yet, there was a marked difference in the type and abundance of taxa, particularly between families Enterobacteriaceae, Bacteroidaceae, Synergistaceae, and Fusobacteriaceae. Functionally, the single vessel community produced significantly less SCFAs compared to the 3-stage colon system. These results provide valuable information on how culturing technique effects gut microbial composition and function, which may impact studies relying on the application of an in vitro strategy. This data can be used to justify experimental strategy and provides insight on the application of a simplified versus complex study design. KEY POINTS : • A mature gut microbiota community can be developed in vitro using different methods. • Beta diversity metrics are affected by the in vitro culturing method applied. • The type and amount of short-chain fatty acids differed between culturing methods.


Assuntos
Microbioma Gastrointestinal , Microbiota , Colo , Ácidos Graxos Voláteis , Humanos , Projetos de Pesquisa
4.
Am J Primatol ; 81(10-11): e23023, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240754

RESUMO

Cebus Apella (C. apella) is a species of Nonhuman Primate (NHP) used for biomedical research because it is phylogenetically similar and shares anatomical commonalities with humans. Here, the gut microbiota of three C. apella were examined in the different regions of the intestinal tract. Using metagenomics, the gut microbiota associated with the luminal content and mucus layer for each intestinal region was identified, and functionality was investigated by quantifying the levels of short chain fatty acids (SCFAs) produced. The results of this study show a high degree of similarity in the intestinal communities among C. apella subjects, with multiple shared characteristics. First, the communities in the lumen were more phylogenetically diverse and rich compared to the mucus layer communities throughout the entire intestinal tract. The small intestine communities in the lumen displayed a higher Shannon diversity index compared to the colon communities. Second, all the communities were dominated by aero-tolerant taxa such as Streptococcus, Enterococcus, Abiotrophia, and Lactobacillus, although there was preferential colonization of specific taxa observed. Finally, the primary SCFA produced throughout the intestinal tract was acetic acid, with some propionic acid and butyric acid detected in the colon regions. The small intestine microbiota produced significantly less SCFAs compared to the communities in the colon. Collectively, these data provide an in-depth report on the composition, distribution, and SCFA production of the gut microbiota along the intestinal tract of the C. apella NHP animal model.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/genética , Metagenoma , Sapajus apella/microbiologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Masculino , Filogenia
5.
Molecules ; 22(8)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28771188

RESUMO

Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae.


Assuntos
Apigenina/farmacologia , Proteínas de Bactérias/biossíntese , Enterococcus/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia
6.
Anaerobe ; 42: 130-141, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742572

RESUMO

Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota.


Assuntos
Bifidobacterium/efeitos dos fármacos , Enterococcus/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Polifenóis/farmacologia , Quercetina/farmacologia , Ruminococcus/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/ultraestrutura , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Enterococcus/crescimento & desenvolvimento , Enterococcus/ultraestrutura , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Anotação de Sequência Molecular , Dobramento de Proteína/efeitos dos fármacos , Purinas/biossíntese , Ruminococcus/crescimento & desenvolvimento , Ruminococcus/ultraestrutura , Análise de Sequência de RNA , Simbiose
7.
J Biol Chem ; 288(42): 30742-30751, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24043629

RESUMO

p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/metabolismo , Ativação Transcricional , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Linhagem Celular Tumoral , Ativação Enzimática/genética , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Receptores ErbB/genética , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Regulação para Cima/genética
8.
Microbiol Resour Announc ; 13(2): e0086223, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236043

RESUMO

We present a donor-specific collection of 78 metagenomes (13/donor) and 143 metagenome-assembled genomes (MAGs), representing the gut microbiomes of six healthy adult human donors. In addition to adding to the catalog of publicly available human gut MAGs, this resource permits a genome-resolved look into microbial co-occurrence across six individuals.

9.
Front Nutr ; 11: 1304045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798771

RESUMO

Introduction: Studies have shown that a diet high in fiber and prebiotics has a positive impact on human health due largely to the fermentation of these compounds by the gut microbiota. One underutilized source of fiber may be rice bran, a waste product of rice processing that is used most frequently as an additive to livestock feed but may be a good source of fibers and other phenolic compounds as a human diet supplement. Previous studies focused on specific compounds extracted from rice bran showed that soluble fibers extracted from rice bran can improve glucose response and reduce weight gain in mouse models. However, less is known about changes in the human gut microbiota in response to regular rice bran consumption. Methods: In this study, we used a Simulator of the Human Intestinal Microbial Ecology (SHIME®) to cultivate the human gut microbiota of 3 different donors in conditions containing either soluble or insoluble fiber fractions from rice bran. Using 16S rRNA amplicon sequencing and targeted metabolomics via Gas Chromatography-Mass Spectrometry, we explored how gut microbial communities developed provided different supplemental fiber sources. Results: We found that insoluble and soluble fiber fractions increased short-chain fatty acid production, indicating that both fractions were fermented. However, there were differences in response between donors, for example the gut microbiota from donor 1 increased acetic acid production with both fiber types compared with control; whereas for donors 2 and 3, butanoic acid production increased with ISF and SF supplementation. Both soluble and insoluble rice bran fractions increased the abundance of Bifidobacterium and Lachnospiraceae taxa. Discussion: Overall, analysis of the effect of soluble and insoluble rice bran fractions on the human in vitro gut microbiota and the metabolites produced revealed individually variant responses to these prebiotics.

10.
Gut Microbes ; 16(1): 2361493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958039

RESUMO

The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.


Assuntos
Bactérias , Colite , Microbioma Gastrointestinal , Mucosa Intestinal , Oxigênio , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Animais , Humanos , Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fezes/microbiologia , Camundongos Endogâmicos C57BL , Sulfato de Dextrana , Colo/microbiologia , Colo/metabolismo , Masculino
11.
mBio ; 15(6): e0094324, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38727244

RESUMO

Bile acids play a critical role in the emulsification of dietary lipids, a critical step in the primary function of the small intestine, which is the digestion and absorption of food. Primary bile acids delivered into the small intestine are conjugated to enhance functionality, in part, by increasing aqueous solubility and preventing passive diffusion of bile acids out of the gut lumen. Bile acid function can be disrupted by the gut microbiota via the deconjugation of primary bile acids by bile salt hydrolases (BSHs), leading to their conversion into secondary bile acids through the expression of bacterial bile acid-inducible genes, a process often observed in malabsorption due to small intestinal bacterial overgrowth. By modeling the small intestinal microbiota in vitro using human small intestinal ileostomy effluent as the inocula, we show here that the infusion of physiologically relevant levels of oxygen, normally found in the proximal small intestine, reduced deconjugation of primary bile acids, in part, through the expansion of bacterial taxa known to have a low abundance of BSHs. Further recapitulating the small intestinal bile acid composition of the small intestine, limited conversion of primary into secondary bile acids was observed. Remarkably, these effects were preserved among four separate communities, each inoculated with a different small intestinal microbiota, despite a high degree of taxonomic variability under both anoxic and aerobic conditions. In total, these results provide evidence for a previously unrecognized role that the oxygenated environment of the small intestine plays in the maintenance of normal digestive physiology. IMPORTANCE: Conjugated primary bile acids are produced by the liver and exist at high concentrations in the proximal small intestine, where they are critical for proper digestion. Deconjugation of these bile acids with subsequent transformation via dehydroxylation into secondary bile acids is regulated by the colonic gut microbiota and reduces their digestive function. Using an in vitro platform modeling the small intestinal microbiota, we analyzed the ability of this community to transform primary bile acids and studied the effect of physiological levels of oxygen normally found in the proximal small intestine (5%) on this metabolic process. We found that oxygenation of the small intestinal microbiota inhibited the deconjugation of primary bile acids in vitro. These findings suggest that luminal oxygen levels normally found in the small intestine may maintain the optimal role of bile acids in the digestive process by regulating bile acid conversion by the gut microbiota.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Intestino Delgado , Oxigênio , Ácidos e Sais Biliares/metabolismo , Humanos , Intestino Delgado/microbiologia , Intestino Delgado/metabolismo , Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Amidoidrolases
12.
PLoS One ; 19(4): e0301381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625903

RESUMO

The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.


Assuntos
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Extratos Vegetais/química , Sementes/química , Antioxidantes/análise , Prebióticos/análise
13.
J Infect Dev Ctries ; 18(3): 407-419, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635613

RESUMO

INTRODUCTION: Intestinal infections are a significant health issue; antibiotics are essential in treating acute intestinal infections. However, evidence in the literature shows that the excessive use of antibiotics has created many threats to human health. This work aimed to study the impact of apple pectin in combination with antibiotics on treating patients with amebiasis and dysentery. METHODOLOGY: Patients suffering from acute intestinal diseases (amebiasis and dysentery) were treated with traditional antibiotic therapy and a new formula containing antibiotics with low and high methoxylated apple pectin in a randomized block design. Four clinical trials were performed at the Infection Disease Hospital from 1998 until 2013. RESULTS: The study demonstrated that the antibiotic-pectin formulae (APF) significantly reduced the severity of acute intestinal infection diseases and allowed patients to recover faster than conventional treatment. APF reduced the patient's stay in the hospital by 3.0 ± 1.0 days. The clinical trial findings demonstrated that applying APF in intestinal infection diseases helped maintain a constant concentration of the antibiotic in the blood and accelerated the clinical recovery of the patients. CONCLUSIONS: It was concluded that using pectin with antibiotics could improve clinical outcomes in patients with acute infectious diseases. Research on elucidating the mechanisms of pectin digestion in the colon, polyphenol content, and its role in dysbiosis recovery, etc., is also considered.


Assuntos
Amebíase , Disenteria Amebiana , Disenteria , Humanos , Antibacterianos/uso terapêutico , Pectinas/uso terapêutico , Disenteria/tratamento farmacológico , Disenteria Amebiana/tratamento farmacológico , Amebíase/tratamento farmacológico
14.
Front Cell Infect Microbiol ; 14: 1296619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638830

RESUMO

The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.


Assuntos
Anti-Infecciosos , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Microbiota , Humanos , Extrato de Senna/análise , Extrato de Senna/farmacologia , Bactérias , Fezes/microbiologia , Sementes , Senosídeos/análise , Senosídeos/farmacologia , Anti-Infecciosos/farmacologia
15.
J Clin Invest ; 134(9)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512401

RESUMO

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Assuntos
Carboidratos da Dieta , Microbioma Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Humanos , Camundongos , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Carboidratos da Dieta/metabolismo , Feminino , Masculino , Fibras na Dieta/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia
16.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37739064

RESUMO

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Assuntos
Enterobacteriaceae , Doenças Inflamatórias Intestinais , Animais , Humanos , Enterobacteriaceae/metabolismo , Disbiose , Doenças Inflamatórias Intestinais/microbiologia , Carnitina/metabolismo , Ácidos Graxos/metabolismo , Escherichia coli , Biomarcadores
17.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37292978

RESUMO

Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.

18.
Front Cell Infect Microbiol ; 13: 1298392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145049

RESUMO

Introduction: In traditional Chinese medicine, the rhizome of Atractylodes macrocephala (Baizhu), the leaves of Isatis indigotica (Daqingye), and the flowers of Albizia julibrissin (Hehuanhua) have been used to treat gastrointestinal illnesses, epidemics, and mental health issues. Modern researchers are now exploring the underlying mechanisms responsible for their efficacy. Previous studies often focused on the impact of purified chemicals or mixed extracts from these plants on cells in tissue culture or in rodent models. Methods: As modulation of the human gut microbiome has been linked to host health status both within the gastrointestinal tract and in distant tissues, the effects of lipid-free ethanol extracts of Baizhu, Daqingye, and Hehuanhua on the human adult gut microbiome were assessed using Systemic Intestinal Fermentation Research (SIFR®) technology (n=6). Results and discussion: Baizhu and Daqingye extracts similarly impacted microbial community structure and function, with the extent of effects being more pronounced for Baizhu. These effects included decreases in the Bacteroidetes phylum and increases in health-related Bifidobacterium spp. and short chain fatty acids which may contribute to Baizhu's efficacy against gastrointestinal ailments. The changes upon Hehuanhua treatment were larger and included increases in multiple bacterial species, including Agathobaculum butyriciproducens, Adlercreutzia equolifaciens, and Gordonibacter pamelaeae, known to produce secondary metabolites beneficial to mental health. In addition, many of the changes induced by Hehuanhua correlated with a rise in Enterobacteriaceae spp., which may make the tested dose of this herb contraindicated for some individuals. Overall, there is some evidence to suggest that the palliative effect of these herbs may be mediated, in part, by their impact on the gut microbiome, but more research is needed to elucidate the exact mechanisms.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa
19.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297350

RESUMO

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

20.
Nutrients ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35276931

RESUMO

It is becoming increasingly important for any project aimed at understanding the effects of diet on human health, to also consider the combined effect of the trillions of microbes within the gut which modify and are modified by dietary nutrients. A healthy microbiome is diverse and contributes to host health, partly via the production and subsequent host absorption of secondary metabolites. Many of the beneficial bacteria in the gut rely on specific nutrients, such as dietary fiber, to survive and thrive. In the absence of those nutrients, the relative proportion of good commensal bacteria dwindles while communities of opportunistic, and potentially pathogenic, bacteria expand. Therefore, it is unsurprising that both diet and the gut microbiome have been associated with numerous human diseases. Inflammatory bowel diseases and colorectal cancer are associated with the presence of certain pathogenic bacteria and risk increases with consumption of a Western diet, which is typically high in fat, protein, and refined carbohydrates, but low in plant-based fibers. Indeed, despite increased screening and better care, colorectal cancer is still the 2nd leading cause of cancer death in the US and is the 3rd most diagnosed cancer among US men and women. Rates are rising worldwide as diets are becoming more westernized, alongside rising rates of metabolic diseases like obesity and diabetes. Understanding how a modern diet influences the microbiota and how subsequent microbial alterations effect human health will become essential in guiding personalized nutrition and healthcare in the future. Herein, we will summarize some of the latest advances in understanding of the three-way interaction between the human host, the gut microbiome, and the specific class of dietary nutrients, lipids.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Feminino , Humanos , Lipídeos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa