Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2405041121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116126

RESUMO

Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.


Assuntos
Endossomos , Nexinas de Classificação , Proteínas de Transporte Vesicular , Humanos , Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/química , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Ligação Proteica , Cristalografia por Raios X , Sítios de Ligação , Modelos Moleculares
2.
EMBO Rep ; 25(8): 3324-3347, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992176

RESUMO

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.


Assuntos
Proteínas F-Box , Proteínas de Membrana , Proteínas Mitocondriais , Mitofagia , Proteólise , Proteínas Proto-Oncogênicas , Animais , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases
3.
J Biol Chem ; 300(1): 105541, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072052

RESUMO

Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Munc18-1. Here, we have used AlphaFold2 to identify and then validate the mechanisms that underpin both the specific interactions of neuronal Mint proteins with Munc18-1 as well as their wider interactome. We found that a short acidic α-helical motif within Mint1 and Mint2 is necessary and sufficient for specific binding to Munc18-1 and binds a conserved surface on Munc18-1 domain3b. In Munc18-1/2 double knockout neurosecretory cells, mutation of the Mint-binding site reduces the ability of Munc18-1 to rescue exocytosis, and although Munc18-1 can interact with Mint and Sx1a (Syntaxin1a) proteins simultaneously in vitro, we find that they have mutually reduced affinities, suggesting an allosteric coupling between the proteins. Using AlphaFold2 to then examine the entire cellular network of putative Mint interactors provides a structural model for their assembly with a variety of known and novel regulatory and cargo proteins including ADP-ribosylation factor (ARF3/ARF4) small GTPases and the AP3 clathrin adaptor complex. Validation of Mint1 interaction with a new predicted binder TJAP1 (tight junction-associated protein 1) provides experimental support that AlphaFold2 can correctly predict interactions across such large-scale datasets. Overall, our data provide insights into the diversity of interactions mediated by the Mint family and show that Mints may help facilitate a key trigger point in SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) complex assembly and vesicle fusion.


Assuntos
Mentha , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Mentha/metabolismo , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ligação Proteica , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Humanos , Animais , Ratos , Células PC12
4.
Small ; 20(23): e2309366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150620

RESUMO

Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Humanos
5.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953983

RESUMO

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Assuntos
Microbiologia de Alimentos , Genoma Viral , Fagos de Salmonella , Salmonella , Sequenciamento Completo do Genoma , Fagos de Salmonella/genética , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/classificação , Fagos de Salmonella/fisiologia , Animais , Salmonella/virologia , Salmonella/genética , Salmonella/classificação , Salmonella/isolamento & purificação , Galinhas , Leite/microbiologia , Leite/virologia , Carne/microbiologia , Carne/virologia , Filogenia
6.
Int Microbiol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613721

RESUMO

Pathogenic Escherichia coli strains cause diseases in both humans and animals. The limiting factors to prevent as well as control infections from pathogenic E. coli strains are their pathotypes, serotypes, and drug resistance. Herein, a bacteriophage (vB_EcoM-P896) has been isolated from duck sewage. Furthermore, aside from targeting intestinal pathogenic E. coli strains like enteropathogenic E. coli, Shiga toxin-producing E. coli, entero-invasive E. coli, and enteroaggregative E. coli, vB_EcoM-P896 can cause lysis in extraintestinal pathogenic E. coli strains such as avian pathogenic E. coli. Stability analysis revealed that vB_EcoM-P896 was stable under the following conditions: temperature, 4℃-50℃; pH, 3-11. The sequencing of the vB_EcoM-P896 genome was conducted utilizing an HiSeq system (Illumina, San Diego, CA) and subjected to de novo assembling with the aid of Spades 3.11.1. The characteristics of the DNA genome were as follows: size, 170,656 bp; GC content, 40.4%; the number of putative coding regions, 294. Transmission electron microscopy analysis of morphology and genome analysis revealed that the phage vB_EcoM-P896 belonged to the order Caudovirales and the family Myoviridae. The pan-genome analysis of vB_EcoM-P896 was divided into two levels. The first level involved the analysis of 91 strains of muscle tail phages, which were mainly divided into 5 groups. The second level involved the analysis of 24 strains of myophage with high homology. Of the 1480 gene clusters, 23 were shared core genes. Neighbor-joining phylogenetic trees were constructed using the Poisson model with MEGA6.0 based on the conserved sequences of phage proteins, the amino acid sequence of the terminase large subunit, and tail fibrin. Further analysis revealed that vB_EcoM-P896 was a typical T4-like potent phage with potential clinical applications.

7.
Appl Environ Microbiol ; 89(1): e0106122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533928

RESUMO

Avian pathogenic Escherichia coli, a causative agent of avian colibacillosis, has been causing serious economic losses in the poultry industry. The increase in multidrug-resistant isolates and the complexity of the serotypes of this pathogen, especially the recently reported emergence of a newly predominant serogroup of O145, make the control of this disease difficult. To address this challenge, a high-throughput screening approach, called Pan-RV (Reverse vaccinology based on pangenome analysis), is proposed to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened from the core genome of 127 Avian pathogenic Escherichia coli (APEC) genomes, and six were verified by Western blots using antisera. Overall, our research will provide a foundation for the development of an APEC subunit vaccine against avian colibacillosis. Given the exponential growth of whole-genome sequencing (WGS) data, our Pan-RV pipeline will make screening of bacterial vaccine candidates inexpensive, rapid, and efficient. IMPORTANCE With the emergence of drug resistance and the newly predominant serogroup O145, the control of Avian pathogenic Escherichia coli is facing a serious challenge; an efficient immunological method is urgently needed. Here, for the first time, we propose a high-throughput screening approach to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Importantly, using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened, and three were shown to be immunoreactive with all antisera (covering the four serogroups), thereby providing a foundation for the development of APEC subunit vaccines against avian colibacillosis. Further, our Pan-RV pipeline will provide immunological control strategies for pathogens with complex and variable genetic backgrounds such as Escherichia coli and will make screening of bacterial vaccine candidates more inexpensive, rapid, and efficient.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Sorogrupo , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Aves Domésticas , Vacinas Bacterianas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Galinhas
8.
Vascular ; 31(5): 884-891, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35451893

RESUMO

AIM: This study aimed to assess the accuracy of contrast-enhanced ultrasound (CEUS) in detecting extracranial carotid artery occlusion. MATERIALS AND METHODS: A systematic literature search was conducted in the Cochrane, PubMed, and EMBASE databases. Prospective or retrospective studies that reported sensitivity and specificity of CEUS for the diagnosis of carotid artery occlusion were selected. Eight studies (354 arteries) were included in the meta-analysis. A bivariate random-effect model was used to estimate overall sensitivity and specificity. The results were also summarized by developing a summary receiver operating characteristic (SROC) curve. RESULTS: The overall sensitivity, specificity, positive, and negative likelihood ratios were 0.99 (95% CI: 0.83-1.00), 0.97 (95% CI: 0.90-0.99), 30.0 (95% CI: 9.8-91.4), and 0.01 (95% CI: 0.00-0.21), respectively; the odds ratio for diagnosis was 4,796 (95% CI: 119-192,584). CONCLUSION: The diagnostic test accuracy suggests that CEUS is a reliable tool for diagnosis of extracranial carotid artery occlusion.


Assuntos
Doenças das Artérias Carótidas , Meios de Contraste , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Ultrassonografia/métodos , Doenças das Artérias Carótidas/diagnóstico por imagem , Sensibilidade e Especificidade
9.
Mikrochim Acta ; 190(8): 325, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493765

RESUMO

A cost-effective approach has been developed to synthesize Cu nanoparticles encapsulated into B and N double-doped carbon nanotubes (Cu@BCNNTs) by one-step pyrolysis. According to the specific binding of Cu-Cl and Cu-glutathione (GSH), we employed Cu@BCNNTs to build an electrochemical sensing platform to detect GSH. The unique space-confined structure can prevent Cu nanoparticles from agglomeration. In addition, B and N co-doped porous hollow tubes can improve the electrochemical conductivity, expand the number of active sites, enhance surface adsorption, and shorten the transport path. These favorable characteristics of Cu@BCNNTs make them have excellent electrocatalytic properties. These results display that the prepared sensor can detect GSH from 0.5 to 120 µM with a detection limit of 0.024 µM. The obtained sensors can be successfully applied in the human serum with recovery of GSH ranging from 100.2 to 103.9%. This work provides a new vision to synthesize nanoparticles confined in a hollow tube for the applications in biosensing and medical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Porosidade , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Nanopartículas/química , Glutationa , Nanotecnologia
10.
Cell Biol Int ; 45(4): 820-830, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325118

RESUMO

Rupture of atherosclerotic plaques constitutes the major cause of thrombosis and acute ischemic coronary syndrome. Bone marrow-derived mesenchymal stem cells microvesicles (BMSCs-MVs) are reported to promote angiogenesis. This study investigated the role of BMSCs-MVs in stabilizing atherosclerotic plaques. BMSCs-MVs in mice were isolated and identified. The mouse model of atherosclerosis was established, and mice were injected with BMSCs-MVs via the tail vein. The macrophage model with high glucose and oxidative damage was established and then incubated with BMSCs-MVs. Nod-like receptor protein 3 (NLRP3) expression, pyroptosis-related proteins, and inflammatory factors were detected. Actinomycin D was used to inhibit the secretion of BMSCs-MVs to verify the source of microRNA-223 (miR-223). The binding relationship between miR-223 and NLRP3 was predicted and verified. BMSCs-MVs with knockdown of miR-223 were cocultured with bone marrow-derived macrophages with knockdown of NLRP3, and then levels of miR-223, NLRP3, pyroptosis-related proteins, and inflammatory factors were detected. BMSCs-MVs could reduce the vulnerability index of atherosclerotic plaques and intima-media thickness in mice, and inhibit pyroptosis and inflammation. BMSCs-MVs inhibited pyroptosis and inflammatory factors in macrophages. BMSCs-MVs carried miR-223 to inhibit NLRP3 expression and reduce macrophage pyroptosis, thereby stabilizing the atherosclerotic plaques.


Assuntos
Aterosclerose/metabolismo , Vesículas Extracelulares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Células Cultivadas , Inflamação/metabolismo , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Piroptose
11.
J Cell Physiol ; 234(11): 20879-20887, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31001861

RESUMO

Osteosarcoma (OS) is a conversant malignant bone tumor, commonly occurs in children and adolescents. Nimotuzuma is an epidermal growth factor receptor (EGRF) monoclonal antibody agent, which has been exploited in varied solid tumors. Nevertheless, the functions of Nimotuzuma in OS remain blurry. We attempted to disclose the impacts of Nimotuzuma on OS cells proliferation and apoptosis. OS MG-63 and U2OS cells were stimulated with the disparate doses of Nimotuzuma. Then, cell viability, cell cycle, and apoptosis were appraised through executing CCK-8 and flow cytometry assays. Moreover, the change of mitochondrial membrane potential (ΔΨm) was estimated via JC-1 fluorescent probe to further probe the impacts of Nimotuzuma on cell apoptosis. The proteins of cell apoptosis, cell cycle, and EGFR/PI3K/AKT were appraised via western blot. Eventually, Nimotuzuma together EGRF or PI3K inhibitor (LY294002) were utilized to dispose MG-63 to further uncover the latent mechanism. We found that Nimotuzuma remarkably repressed cell viability at a time- and dose-dependent manners in MG-63 and U2OS cells. The percentage of the S phase cells was evidently reduced by Nimotuzuma through regulating P21, Cyclin E1, and Cyclin D1. In addition, Nimotuzuma obviously evoked cell apoptosis, meanwhile elevated Bid, Bax, and cleaved-caspase-3. Further exploration showed that Nimotuzuma decreased ΔΨm in a dose-dependent manner in MG-63 and U2OS cells. Besides, we discovered the repressive functions of Nimotuzuma in OS cells proliferation and apoptosis via hindering the EGFR/PI3K/AKT pathway. These investigations testified that Nimotuzuma repressed cell growth by restraining the EGFR/PI3K/AKT pathway in OS cells, hinting the antitumor activity of Nimotuzuma in OS.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Receptores ErbB/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fase S/efeitos dos fármacos
12.
J Cell Biochem ; 120(1): 243-252, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216500

RESUMO

Chemotherapy drug resistance frequently happens in more than 50% of bladder cancer patients and is the major obstacle for the bladder cancer therapy. Recent studies have shown that long noncoding RNA (lncRNA) is involved in the development of chemoresistance. In this study, we reported hypoxia inducible factor 1α-antisense RNA 2 (HIF1A-AS2), as a subtype-specific hypoxia inducible lncRNA, is upregulated in bladder cancer cells and tissue after cisplatin (Cis) treatment. The induction of HIF1A-AS2 in bladder cancer cells rendered resistance to Cis-induced apoptosis. Silencing HIF1A-AS2 in Cis-resistant bladder cancer cells was re-sensitized to Cis-induced apoptosis. Mechanically, we found that HIF1A-AS2 suppressed the transcription activity of p53 family proteins by promoting the expression of high-mobility group A1 (HMGA1). The induction of HMGA1 physically interacts with p53, p63, and p73, and therefore constrains their transcriptional activity on Bax. Knockdown of HIF1A-AS2 or HMGA1 rescued the expression of Bax, which therefore enhanced the killing effect of Cis. Furthermore, we also found that the expression of HIF1A-AS2 was higher in the human bladder tumor tissues after Cis treatment, and was positive correlated to the expression of HIF1α and HMGA1. This study suggests that upregulated HIF1A-AS2 hampers the p53 family proteins dependent apoptotic pathway to promote Cis resistance in bladder cancer. Our data suggested that HIF1A-AS2 plays oncogenic roles and can be used as a therapeutic target for treating human bladder cancer.


Assuntos
Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Idoso , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/patologia , Proteína X Associada a bcl-2/metabolismo
13.
J Cell Biochem ; 119(1): 392-400, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600848

RESUMO

There is evidence that angiotensin II (Ang II) may impair the functions of endothelial progenitor cells (EPCs). It was revealed that DJ-1 could resist oxidative stress. In this study, we investigated whether DJ-1 could protect EPCs against Ang II-induced cell damage. The proliferation and migration of EPCs were strongly reduced in the Ang II group and were increased by overexpression of DJ-1. Western blotting indicated that the increased expression of the senescence marker ß-galactosidase and decreased expression of adhesion molecules (ICAM-1, VCAM-1) induced by Ang II were reversed after Ad-DJ-1 transfection. The reduced angiogenic capacity of EPCs caused by Ang II was also improved after Ad-DJ-1 transfection. Moreover, Ang II significantly increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory cytokines (TNF-α and IL-1ß), reduced the levels of superoxide dismutase (SOD), glutathione (GSH), and these were reversed by Ad-DJ-1 transfection. Expression of peroxisome proliferator-activated receptor-γ (PPARγ) and heme oxygenase (HO-1) was increased by DJ-1. Therefore, HO-1 siRNA were constructed and transfected into EPCs, and the results showed that HO-1 siRNA transfection inhibited the effects of DJ-1 on EPC function. Thus, our study implies that DJ-1 may protect EPCs against Ang II-induced dysfunction by activating the PPARγ/HO-1. J. Cell. Biochem. 119: 392-400, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Angiotensina II/efeitos adversos , Células Progenitoras Endoteliais/metabolismo , Heme Oxigenase-1/metabolismo , PPAR gama/metabolismo , Proteína Desglicase DJ-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Angiotensina II/farmacologia , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , PPAR gama/genética , Proteína Desglicase DJ-1/genética , Transdução de Sinais/genética
14.
Cell Physiol Biochem ; 51(4): 1679-1694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504718

RESUMO

BACKGROUND/AIMS: In this study, we aimed to investigate how MORC family CW-type zinc finger 2 (MORC2) affects tumor progression of lung cancer. METHODS: The MORC2 level was analyzed by real-time RT-PCR and immunohistochemistry (IHC) in normal control tissues and lung cancers. LL/2 cells overexpressing MORC2 were used to study how MORC2 expression influences lung cancer progression. The effects of MORC2 on cell viability, migration and invasion were assessed by MTT assay, Western blotting, and transwell assays, respectively. Afterwards, the effects of MORC2 on the activation of the Wnt/ß-catenin pathway were explored by Western blotting. The effects of MORC2 on tumor-associated macrophages (TAM) were determined by immunofluorescence (IF) staining, real-time RT-PCR and Western blotting. RESULTS: Our results showed that MORC2 was upregulated in lung cancers relative to adjacent tissues. The results also demonstrated that MORC2 promoted lung cancer tumor growth in vivo. Additionally, MORC2 overexpression stimulated the upregulation of vascular endothelial growth factor (VEGF), driving angiogenesis. MORC2 overexpression in LL/2 also increased the amount of aldehyde dehydrogenase-1 (ALDH1) protein, indicating that MORC2 increased cancer stem cell features. We further determined that MORC2 activated Wnt/ß-catenin signaling in lung cancer cells. Upregulation of macrophage-recruiting genes including VEGF and Macrophage-specific colony stimulating factor (CSF-1) recruits TAMs to the tumor site, which has the net effect of promoting additional tumor growth and metastasis. CONCLUSION: Our data suggest that MORC2 overexpression can drive lung cancer growth by stimulating the recruitment of TAMs in addition to angiogenesis and that activation of Wnt/ß-signaling may be a key pathway underlying this phenotype that is amenable to pharmacological intervention.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Invasividade Neoplásica/patologia , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
15.
Biochem Biophys Res Commun ; 500(3): 589-596, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29673591

RESUMO

Pneumonia is a lower respiratory disease caused by pathogens or other factors. This study aimed to explore the roles and mechanism of long noncoding RNA HAGLROS in lipopolysaccharides (LPS)-induced inflammatory injury in pneumonia. The HAGLROS expression in serum of patients with acute stage pneumonia was detected. To induce pulmonary injury, WI-38 human lung fibroblasts were stimulated with lipopolysaccharides (LPS). The HAGLROS expressions in LPS-treated WI-38 cells and the effects of HAGLROS knockdown on the viability, apoptosis, and autophagy of LPS-induced cells were detected. Moreover, the regulatory relationship between HAGLROS and miR-100 was explored as well as the functional targets of miR-100 were identified. Furthermore, the regulatory relationship between miR-100 and PI3K/AKT/NF-κB pathway was elucidated. LncRNA HAGLROS was higher expressed in serum of patients with acute stage pneumonia compared with that in serum of healthy control. LPS caused WI-38 cell injury and increased HAGLROS levels. Downregulation of HAGLROS alleviated LPS-induced cell injury via increasing cell viability, and inhibiting apoptosis and autophagy. Moreover, there was a negative correlation between HAGLROS and miR-100, and the effects of HAGLROS downregulation on LPS-induced apoptosis and autophagy in WI-38 cells were by regulation of miR-100. Furthermore, NFΚB3 was verified as a functional target of miR-100 and effects of miR-100 inhibition on LPS-induced WI-38 cell injury were alleviated by knockdown of NFΚB3. Besides, Knockdown of HAGLROS inhibited the activation of PI3K/AKT/NF-κB pathway. Our findings reveal that downregulation of HAGLROS may alleviate LPS-induced inflammatory injury in WI-38 cells via modulating miR-100/NF-κB axis. HAGLROS/miR-100/NF-κB axis may provide a new strategy for treating acute stage of pneumonia.


Assuntos
Apoptose/genética , Autofagia/genética , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição RelA/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Adulto Jovem
16.
Tumour Biol ; 37(9): 12231-12239, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27236538

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through the endogenous RNA interference machinery. Treatments with combination of chemotherapy with surgery are essential for advanced-stage colorectal cancer. However, the development of chemoresistance is a major obstacle for clinical application of anticancer drugs. In this study, we report a miR-203-SIK2 axis that involves in the regulation of Taxol sensitivity in colon cancer cells. MiR-203 is downregulated in human colon tumor specimens and cell lines compared with their normal counterparts. We report miR-203 is correlated with Taxol sensitivity: overexpression of miR-203 sensitizes colon cancer cells and the Taxol-resistant cells display downregulated miR-203 compared with Taxol-sensitive cells. We identify SIK2 as a direct target of miR-203 in colorectal cancer cells. Overexpression of miR-203 complementary pairs to the 3' untranslated region (UTR) of SIK2, leading to the sensitization of Taxol resistant cells. In addition, miR-203 and the salt-inducible kinase 2 (SIK2) are reverse expressed in human colorectal tumors. Finally, we demonstrate recovery of SIK2 by overexpression of SIK2-desensitized Taxol-resistant cells, supporting the miR-203-mediated sensitization to Taxol, is through the inhibition of SIK2. In general, our study will provide mechanisms of the microRNA-based anti-tumor therapy to develop anti-chemoresistance drugs.


Assuntos
Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/genética , Regiões 3' não Traduzidas/genética , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Imuno-Histoquímica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Methods ; 67(2): 227-33, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24602841

RESUMO

DNA nanotechnology is a powerful tool to fabricate nanoscale motors, but the DNA nanomotors to date are largely limited to the simplistic burn-the-bridge design principle that prevents re-use of a fabricated motor-track system and is unseen in biological nanomotors. Here we propose and experimentally demonstrate a scheme to implement a conceptually new design principle by which a symmetric bipedal nanomotor autonomously gains a direction not by damaging the traversed track but by fine-tuning the motor's size.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Termodinâmica
18.
J Assist Reprod Genet ; 32(1): 107-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25374395

RESUMO

PURPOSE: Patients with a karyotype of 45,X (monosomy X) normally display a female phenotype. However, in some rare cases, monosomy X is associated with maleness. Here we describe a case of a male with a 45,X karyotype and primary infertility, which prompted molecular investigation of the sex-determination gene SRY. METHODS: Karyotyping was performed by GTG-banded chromosome analysis. The presence and location of SRY was investigated using PCR and FISH, respectively. RESULTS: PCR confirmed the presence of the SRY gene while FISH analysis demonstrated its location on the p arm of chromosome 13. These findings demonstrate that autosomal retention of SRY can be sub-microscopic and emphasize the importance of PCR and FISH in the genetic workup of the monosomic X male.


Assuntos
Cromossomos Humanos Par 13/genética , Infertilidade/genética , Proteína da Região Y Determinante do Sexo/genética , Translocação Genética/genética , Síndrome de Turner/genética , Azoospermia/genética , Azoospermia/patologia , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Infertilidade/patologia , Cariotipagem , Masculino , Análise para Determinação do Sexo , Síndrome de Turner/patologia
19.
Mol Cell Biochem ; 392(1-2): 125-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24788726

RESUMO

Renal cell carcinoma (RCC) is the most common types among kidney cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) strongly induces apoptosis in RCC. However, TRAIL therapy also leads to hepatotoxicity. To improve the biosafety, we inserted miRNA response elements (MREs) of miR-138, miR-199, and miR-122 into an adenoviral vector, Ad-TRAIL-3MREs, to restrict TRAIL expression within RCC cells. Luciferase assays showed that MREs can regulate the expression of exogenous gene in RCC cells. Ad-TRAIL-3MREs selectively expressed TRAIL and induce apoptosis in RCC cells, but not in normal cells. MTT assays revealed that Ad-TRAIL-3MREs reduced viability of RCC cells without cytotoxicity to normal cells. Ad-TRAIL-3MREs suppressed the growth of ACHN tumors and exerted no hepatotoxicity in vivo. Collectively, we generated a TRAIL-expressing adenoviral vector under the regulation of MREs. This miRNA-based gene therapy may be a promising strategy for RCC treatment.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , MicroRNAs/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Adenoviridae/genética , Sequência de Bases , Carcinoma de Células Renais/metabolismo , Primers do DNA , Vetores Genéticos , Humanos , Neoplasias Renais/metabolismo , MicroRNAs/genética , Reação em Cadeia da Polimerase , Ligante Indutor de Apoptose Relacionado a TNF/genética
20.
Front Aging Neurosci ; 16: 1407423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934018

RESUMO

Background: Amid the backdrop of global aging, the increasing prevalence of cognitive decline among the elderly, particularly within the female demographic, represents a considerable public health concern. Physical activity (PA) is recognized as an effective non-pharmacological intervention for mitigating cognitive decline in older adults. However, the relationship between different PA patterns and cognitive function (CF) in elderly women remains unclear. Methods: This study utilized data from National Health and Nutrition Examination Survey (NHANES) 2011-2014 to investigate the relationships between PA, PA patterns [inactive, Weekend Warrior (WW), and Regular Exercise (RE)], and PA intensity with CF in elderly women. Multivariate regression analysis served as the primary analytical method. Results: There was a significant positive correlation between PA and CF among elderly women (ß-PA: 0.003, 95% CI: 0.000-0.006, P = 0.03143). Additionally, WW and RE activity patterns were associated with markedly better cognitive performance compared to the inactive group (ß-WW: 0.451, 95% CI: 0.216-0.685, P = 0.00017; ß-RE: 0.153, 95% CI: 0.085-0.221, P = 0.00001). Furthermore, our results indicate a progressive increase in CF with increasing PA intensity (ß-MPA- dominated: 0.16, 95% CI: 0.02-0.09, P = 0.0208; ß-VPA-dominated: 0.21, 95% CI: 0.09-0.34, P = 0.0011; ß-Total VPA: 0.31, 95% CI: -0.01-0.63, P = 0.0566). Conclusion: Our study confirms a positive association between PA and CF in elderly women, with even intermittent but intensive PA models like WW being correlated with improved CF. These findings underscore the significant role that varying intensities and patterns of PA play in promoting cognitive health among older age groups, highlighting the need for adaptable PA strategies in public health initiatives targeting this population.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa