Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Immunol ; 207(1): 234-243, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183366

RESUMO

T cell-interacting activating receptor on myeloid cells 1 (TARM-1) is a novel leukocyte receptor expressed in neutrophils and macrophages. It plays an important role in proinflammatory response in acute bacterial infection, but its immunomodulatory effects on chronic Mycobacterium tuberculosis infections remain unclear. TARM-1 expression was significantly upregulated on CD14high monocytes from patients with active pulmonary tuberculosis (TB) as compared that on cells from patients with latent TB or from healthy control subjects. Small interfering RNA knockdown of TARM-1 reduced expression levels of proinflammatory cytokines IL-12, IL-18, IL-1ß, and IL-8 in M. tuberculosis-infected macrophages, as well as that of HLA-DR and costimulatory molecules CD83, CD86, and CD40. Moreover, TARM-1 enhanced phagocytosis and intracellular killing of M. tuberculosis through upregulating reactive oxygen species. In an in vitro monocyte and T cell coculture system, blockade of TARM-1 activity by TARM-1 blocking peptide suppressed CD4+ T cell activation and proliferation. Finally, administration of TARM-1 blocking peptide in a mouse model of M. tuberculosis infection increased bacterial load and lung pathology, which was associated with decreased macrophage activation and IFN-γ production by T cell. Taken together, these results, to our knowledge, demonstrate a novel immune protective role of TARM-1 in M. tuberculosis infection and provide a potential therapeutic target for TB disease.


Assuntos
Macrófagos/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Adulto , Estudos de Coortes , Feminino , Humanos , Ativação de Macrófagos/imunologia , Masculino , Receptores Imunológicos/genética
2.
FASEB J ; 35(8): e21809, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314052

RESUMO

Renal ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI). Aquaporin (AQP)-1 water channel in the kidney is critical for the maintenance of water homeostasis and the urinary concentrating ability. Increasing evidence supports an important role of autophagy in the pathogenesis of AKI induced by renal I/R. The purpose of the present study is to investigate whether activation of autophagy prevents downregulation of AQP1 protein induced by renal I/R and potential molecular mechanisms. Renal I/R induced consistently reduced protein expression of AQP1, 2, and 3, as well as sodium cotransporters Na+ -K+ -2Cl- cotransporter and α-Na,K-ATPase, which was associated with increased urine output and decreased creatinine clearance in rats. Renal I/R also suppressed autophagy and increased inflammatory responses in the kidney. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), the glycogen synthase kinase-3ß inhibitor, ameliorated renal injury under I/R, activated autophagy and markedly increased expression of AQPs and sodium transporters in the kidney, which was associated with improved urine output and creatinine clearance in rats. Hypoxia/reoxygenation (H/R) induced suppression of autophagy and downregulation of AQP1 in murine inner medullary collecting duct 3 (IMCD3) cells, which was fully prevented by TDZD-8 treatment. Inhibition of autophagy by 3-methyladenine or Atg5 gene knockdown attenuated recovery of AQP1 protein expression induced by TDZD-8 in IMCD3 cells with H/R. Interleukin-1 beta (IL-1ß) decreased the abundance of AQP1 protein in IMCD3 cells. H/R induced increases in protein expression of nod-like receptor pyrin domain-containing 3 and IL-1ß, which was reversed by TDZD-8. In conclusion, TDZD-8 treatment prevented downregulation of AQP1 expression under renal I/R injury, likely via activating autophagy and decreasing IL-1ß production.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Aquaporina 1/metabolismo , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Tiadiazóis/farmacologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
3.
Am J Physiol Renal Physiol ; 320(3): F308-F321, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427060

RESUMO

Renal ischemia-reperfusion (I/R) injury is associated with markedly reduced protein expression of aquaporins (AQPs). Membrane G protein-coupled bile acid receptor-1 (TGR5) has shown protective roles in some kidney diseases. The purpose of the current study was to investigate whether activation of TGR5 prevented the decreased protein expression of AQPs in rodents with renal I/R injury and potential mechanisms. TGR5 agonist lithocholic acid (LCA) treatment reduced polyuria after renal I/R injury in rats. LCA prevented the decreased abundance of AQP2 protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression, which were associated with decreased protein abundance of NF-κB p65 and IL-1ß. After renal I/R, mice with tgr5 gene deficiency exhibited further decreases in AQP2 and HIF-1α protein abundance and increases of IL-1ß and NF-κB p65 protein expression compared with wild-type mice. In primary cultured inner medullary collecting duct cells with hypoxia/reoxygenation, LCA induced markedly increased protein expression of AQP2 and HIF-1α, which were partially prevented by the PKA inhibitor H89. FG4592, a prolyl-4-hydroxylase domain-containing protein inhibitor, increased HIF-1α and AQP2 protein abundance in association with decreased NF-κB p65 protein expression in inner medullary collecting duct cells with hypoxia/reoxygenation. In conclusion, TGR5 stimulation by LCA prevented downregulation of renal AQPs in kidney with I/R injury, likely through activating HIF-1α signaling and suppressing inflammatory responses.NEW & NOTEWORTHY Stimulation of the membrane G protein-coupled bile acid receptor TGR5 by lithocholic acid (LCA) reduced polyuria in rats with renal ischemia-reperfusion (I/R) injury. LCA increased abundance of aquaporin-2 (AQP2) protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression in association with decreased NF-κB p65 and IL-1ß. After I/R, mice with tgr5 gene deficiency exhibited more severe decreases in AQP2 and HIF-1α protein abundance and inflammatory responses. TGR5 activation exhibits a protective role in acute renal injury induced by I/R.


Assuntos
Aquaporina 2/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
4.
FASEB J ; 33(1): 469-483, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036087

RESUMO

Increasing evidence supports the important role of H2S in renal physiology and the pathogenesis of kidney injury. Whether H2S regulates water metabolism in the kidney and the potential mechanism are still unknown. The present study was conducted to determine the role of H2S in urine concentration. Inhibition of both cystathionine-γ-lyase (CSE) and cystathionine-ß-synthase (CBS), 2 major enzymes for endogenous H2S production, with propargylglycine (PPG) and amino-oxyacetate (AOAA), respectively, caused increased urine output and reduced urine osmolality in mice that was associated with decreased expression of aquaporin (AQP)-2 in the renal inner medulla. Mice treated with both PPG and AOAA developed a urine concentration defect in response to dehydration that was accompanied by reduced AQP-2 protein expression. Inhibition of CSE alone was associated with a mild decrease in AQP-2 protein level in the renal medulla of heterozygous CBS mice. GYY4137, a slow H2S donor, markedly improved urine concentration and prevented the down-regulation of renal AQP-2 protein expression in mice with lithium-induced nephrogenic diabetes insipidus (NDI). GYY4137 significantly increased cAMP levels in cell lysates prepared from inner medullary collecting duct (IMCD) suspensions. AQP-2 protein expression was also upregulated, but was significantly inhibited by the adenyl cyclase inhibitor MDL12330A or the PKA inhibitor H89, but not the vasopressin 2 receptor (V2R) antagonist tolvaptan. Inhibition of endogenous H2S production impaired urine concentration in mice, whereas an exogenous H2S donor improved urine concentration in lithium-induced NDI by increasing AQP-2 expression in the collecting duct principal cells. H2S upregulated AQP-2 protein expression, probably via the cAMP-PKA pathway.-Luo, R., Hu, S., Liu, Q., Han, M., Wang, F., Qiu, M., Li, S., Li, X., Yang, T., Fu, X., Wang, W., Li, C. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration.


Assuntos
Aquaporina 2/metabolismo , Cistationina beta-Sintase/fisiologia , Cistationina gama-Liase/fisiologia , Sulfeto de Hidrogênio/farmacologia , Medula Renal/metabolismo , Micção/efeitos dos fármacos , Urina/química , Alcinos/metabolismo , Ácido Amino-Oxiacético/metabolismo , Animais , Gasotransmissores/farmacologia , Glicina/análogos & derivados , Glicina/metabolismo , Medula Renal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Urinálise
5.
J Am Soc Nephrol ; 29(11): 2658-2670, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305310

RESUMO

BACKGROUND: The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. METHODS: We used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5-/-) mice. RESULTS: Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5-specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5-/- mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney inner medulla. In lithium-treated Tgr5-/- mice, LCA treatment failed to prevent reduction of AQP2 expression. CONCLUSIONS: TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Água/metabolismo , Animais , Aquaporina 2/genética , Ácidos e Sais Biliares/farmacologia , Células Cultivadas , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Ácidos Cólicos/farmacologia , Diabetes Insípido Nefrogênico/metabolismo , Homeostase , Túbulos Renais Coletores/efeitos dos fármacos , Ácido Litocólico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
6.
Am J Physiol Renal Physiol ; 315(2): F199-F210, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29592526

RESUMO

The molecular mechanisms of melamine-induced renal toxicity have not been fully understood. The purpose of the study aimed to investigate whether melamine and cyanuric acid induced NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the kidney, which may contribute to abnormal water and sodium handling in a rat model. Wistar rats received melamine (Mel; 200 mg·kg body wt-1·day-1), cyanuric acid (CA; 200 mg·kg body wt-1·day-1), or Mel plus CA (Mel + CA; 100 mg·kg body wt-1·day-1, each) for 2 wk. Mel + CA caused damaged tubular epithelial structure and organelles, dilated tubular lumen, and inflammatory responses. Crystals were observed in urine and serum specimen, also in the lumen of dilated distal renal tubules. The combined ingestion of Mel and CA in rats caused a markedly impaired urinary concentration, which was associated with reduced protein expression of aquaporin (AQP)1, 2, and 3 in inner medulla and α-Na-K-ATPase and Na-K-2Cl transporters in cortex and outer medulla. Mel + CA treatment was associated with increased protein expression of CD3 and mRNA levels of CD68 and F4/80 as well as phosphorylation of NF-κB in the kidney. Mel + CA treatment increased protein and mRNA expression of NLRP3 inflammasome components apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, and IL-1ß in the inner medulla of rats. NF-κB inhibitor Bay 11-7082 reduced IL-1ß expression induced by Mel + CA and prevented downregulation of AQP2 in inner medullary collecting duct cell suspensions. In conclusion, Mel + CA treatment caused urinary-concentrating defects and reduced expression of renal AQPs and key sodium transporters, which is likely due to the inflammatory responses and activation of NLRP3 inflammasome induced by crystals formed in the kidney.


Assuntos
Inflamassomos/metabolismo , Rim/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Poliúria/metabolismo , Triazinas , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aquaporinas/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Complexo CD3/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Rim/patologia , Rim/fisiopatologia , Capacidade de Concentração Renal , Masculino , NF-kappa B/metabolismo , Fosforilação , Poliúria/induzido quimicamente , Poliúria/patologia , Poliúria/fisiopatologia , Ratos Wistar , Transdução de Sinais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Am J Physiol Renal Physiol ; 313(4): F914-F925, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228402

RESUMO

The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food-1·day-1 for 4 days and 20 mmol·kg dry food-1·day-1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt-1·day-1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways.


Assuntos
Amidas/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/tratamento farmacológico , Fumaratos/uso terapêutico , Túbulos Renais Coletores/efeitos dos fármacos , Amidas/farmacologia , Angiotensina II/urina , Animais , Anti-Hipertensivos/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fumaratos/farmacologia , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Lítio , Masculino , Camundongos Endogâmicos C57BL , Poliúria/induzido quimicamente , Poliúria/tratamento farmacológico , Receptores de Superfície Celular/metabolismo , Receptor de Pró-Renina
8.
Environ Pollut ; 347: 123741, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458516

RESUMO

Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Teorema de Bayes , Inflamação/induzido quimicamente , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Estresse Oxidativo , Terapia de Imunossupressão , Imunoglobulina G
9.
Transl Res ; 271: 26-39, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38734063

RESUMO

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.


Assuntos
Doxorrubicina , Fibroínas , Metabolismo dos Lipídeos , PPAR alfa , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , PPAR alfa/metabolismo , PPAR alfa/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fibroínas/química , Fibroínas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Peptídeos/farmacologia , Peptídeos/química , Ratos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ratos Sprague-Dawley
10.
Acta Physiol (Oxf) ; 234(4): e13802, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35178888

RESUMO

AIM: This study investigated whether enhanced histone acetylation, achieved by inhibiting histone deacetylases (HDACs), could prevent decreased aquaporin-2 (AQP2) expression during hypokalaemia. METHODS: Male Wistar rats were fed a potassium-free diet with or without 4-phenylbutyric acid (4-PBA) or the selective HDAC3 inhibitor RGFP966 for 4 days. Primary renal inner medullary collecting duct (IMCD) cells and immortalized mouse cortical collecting duct (mpkCCD) cells were cultured in potassium-deprivation medium with or without HDAC inhibitors. RESULTS: 4-PBA increased the levels of AQP2 mRNA and protein in the kidney inner medullae in hypokalaemic (HK) rats, which was associated with decreased urine output and increased urinary osmolality. The level of acetylated H3K27 (H3K27ac) protein was decreased in the inner medullae of HK rat kidneys; this decrease was mitigated by 4-PBA. The H3K27ac levels were decreased in IMCD and mpkCCD cells cultured in potassium-deprivation medium. Decreased H3K27ac in the Aqp2 promoter region was associated with reduced Aqp2 mRNA levels. HDAC3 protein expression was upregulated in mpkCCD and IMCD cells in response to potassium deprivation, and the binding of HDAC3 to the Aqp2 promoter was also increased. RGFP966 increased the levels of H3K27ac and AQP2 proteins and enhanced binding between H3K27ac and AQP2 in mpkCCD cells. Furthermore, RGFP966 reversed the hypokalaemia-induced downregulation of AQP2 and H3K27ac and alleviated polyuria in rats. RGFP966 increased interstitial osmolality in the kidney inner medullae of HK rats but did not affect urinary cAMP levels. CONCLUSION: HDAC inhibitors prevented the downregulation of AQP2 induced by potassium deprivation, probably by enhancing H3K27 acetylation.


Assuntos
Hipopotassemia , Túbulos Renais Coletores , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Hipopotassemia/metabolismo , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Potássio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
11.
Cell Death Dis ; 13(9): 771, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068223

RESUMO

Triggering receptors expressed on myeloid cells 2 (TREM2) is considered a protective factor to protect host from bacterial infection, while how it elicits this role is unclear. In the present study, we demonstrate that deficiency of triggering receptors expressed on myeloid cells 2 (TREM2) significantly enhanced macrophage pyroptosis induced by four common pyogenic bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Escherichia coli. TREM2 deficiency also decreased bacterial killing ratio of macrophage, while Caspase-1 or GSDMD inhibition promoted macrophage-mediated clearance to these bacteria. Further study demonstrated that the effect of TREM2 on macrophage pyroptosis and bacterial eradication mainly dependents on the activated status of NLRP3 inflammasome. Moreover, as the key downstream of TREM2, ß-catenin phosphorylated at Ser675 by TREM2 signal and accumulated in nucleus and cytoplasm. ß-catenin mediated the effect of TREM2 on NLRP3 inflammasome and macrophage pyroptosis by reducing NLRP3 expression, and inhibiting inflammasome complex assembly by interacting with ASC. Collectively, TREM2/ß-catenin inhibits NLRP3 inflammasome to regulate macrophage pyroptosis, and enhances macrophage-mediated pyogenic bacterial clearance.


Assuntos
Inflamassomos , Piroptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pseudomonas aeruginosa , beta Catenina/metabolismo
12.
Acta Pharm Sin B ; 11(7): 1965-1977, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386331

RESUMO

Adoptive cell therapy (ACT) is an emerging powerful cancer immunotherapy, which includes a complex process of genetic modification, stimulation and expansion. During these in vitro or ex vivo manipulation, sensitive cells are inescapability subjected to harmful external stimuli. Although a variety of cytoprotection strategies have been developed, their application on ACT remains challenging. Herein, a DNA network is constructed on cell surface by rolling circle amplification (RCA), and T cell-targeted trivalent tetrahedral DNA nanostructure is used as a rigid scaffold to achieve high-efficient and selective coating for T cells. The cytoprotective DNA network on T-cell surface makes them aggregate over time to form cell clusters, which exhibit more resistance to external stimuli and enhanced activities in human peripheral blood mononuclear cells and liver cancer organoid killing model. Overall, this work provides a novel strategy for in vitro T cell-selective protection, which has a great potential for application in ACT.

13.
Front Physiol ; 10: 1157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572210

RESUMO

We previously demonstrated that ureteral obstruction is associated with a urinary concentrating defect and reduced expression of renal aquaporins (AQPs), in which the renin-angiotensin system (RAS) may play an important role. The aims of the present study were to examine whether the renin inhibitor aliskiren could prevent the reduction in AQP expression and improve the urinary concentrating capacity in mice with bilateral ureteral obstruction (BUO) and BUO release. BUO was performed for 24 h, and BUO release was performed for 1 (B-R1D) or 3 days (B-R3D) with or without aliskiren treatment. Aliskiren prevented polyuria and decreased urine osmolality induced by B-R3D. In mice with BUO and BUO release, aliskiren attenuated the reduction in AQP2 protein and mRNA expression in the obstructed kidneys. B-R3D increased the protein expression of NLRP3 inflammasome components ASC, caspase-1, and interleukin-1ß in the obstructed kidneys, which was markedly prevented by aliskiren. Moreover, the NF-κB inhibitor Bay 11-7082 blocked NLRP3 inflammasome activation and attenuated the decrease in AQP2 protein expression in primary cultured rat inner medullary collecting duct cells treated with angiotensin II. These results indicate that the renin inhibitor aliskiren increases water channel AQP2 expression at least partially by suppressing NLRP3 inflammasome activation in the obstructed kidneys of mice with BUO and BUO release.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa