Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 567, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844850

RESUMO

This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.


Assuntos
COVID-19 , Citometria de Fluxo , Leucócitos Mononucleares , RNA Viral , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , COVID-19/virologia , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , RNA Viral/sangue , Adulto , Estudos Longitudinais , Análise de Célula Única/métodos , Células Matadoras Naturais/imunologia , Anticorpos Antivirais/sangue , Imunofenotipagem , Idoso
2.
Artigo em Inglês | MEDLINE | ID: mdl-38943520

RESUMO

Sida rhombifolia (S. rhombifolia) is a widely used herbal plant for humans because of its antioxidant and antibacterial effects, but its potential use as a feed additive for livestock has not been investigated. Twenty 350 days-old Anyi tile-like grey chickens were randomly divided into a control group (fed basal diet) and a treatment group (fed basal diet + 3% of S. rhombifolia), and these chickens were feed for 31 days. Dietary S. rhombifolia remarkably enhanced plasma antioxidants, including the significantly increased total antioxidant capability (p < 0.01), catalase (p = 0.04), and superoxide dismutase (p < 0.01) in the treatment group. Furthermore, dietary S. rhombifolia also modulated chicken cecal microbiota, including an increased microbial diversity (Shannon, p = 0.03; Chao1, p = 0.03) in the treatment group. Regarding taxonomic analysis, 34 microbial taxa showed significant differences between the two groups. Meanwhile, the dominant phylum Actinobacteriota (p = 0.04), and dominant genera Desulfovibrio (p = 0.04) and Olsenella (p = 0.02) were significantly increased after treatment, whereas the pathogenic genus Escherichia-Shigella (p = 0.04) was significantly decreased after feeding S. rhombifolia. The results indicating that S. rhombifolia has potential for use as a natural plant feed additive for chickens.

3.
J Transl Med ; 21(1): 448, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415134

RESUMO

BACKGROUND: There are emerging studies suggesting that non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disease with multiple etiologies and molecular phenotypes. Fibrosis is the key process in NAFLD progression. In this study, we aimed to explore molecular phenotypes of NAFLD with a particular focus on the fibrosis phenotype and also aimed to explore the changes of macrophage subsets in the fibrosis subset of NAFLD. METHODS: To assess the transcriptomic alterations of key factors in NAFLD and fibrosis progression, we included 14 different transcriptomic datasets of liver tissues. In addition, two single-cell RNA sequencing (scRNA-seq) datasets were included to construct transcriptomic signatures that could represent specific cells. To explore the molecular subsets of fibrosis in NAFLD based on the transcriptomic features, we used a high-quality RNA-sequencing (RNA-seq) dataset of liver tissues from patients with NAFLD. Non-negative matrix factorization (NMF) was used to analyze the molecular subsets of NAFLD based on the gene set variation analysis (GSVA) enrichment scores of key molecule features in liver tissues. RESULTS: The key transcriptomic signatures on NAFLD including non-alcoholic steatohepatitis (NASH) signature, fibrosis signature, non-alcoholic fatty liver (NAFL) signature, liver aging signature and TGF-ß signature were constructed by liver transcriptome datasets. We analyzed two liver scRNA-seq datasets and constructed cell type-specific transcriptomic signatures based on the genes that were highly expressed in each cell subset. We analyzed the molecular subsets of NAFLD by NMF and categorized four main subsets of NAFLD. Cluster 4 subset is mainly characterized by liver fibrosis. Patients with Cluster 4 subset have more advanced liver fibrosis than patients with other subsets, or may have a high risk of liver fibrosis progression. Furthermore, we identified two key monocyte-macrophage subsets which were both significantly correlated with the progression of liver fibrosis in NAFLD patients. CONCLUSION: Our study revealed the molecular subtypes of NAFLD by integrating key information from transcriptomic expression profiling and liver microenvironment, and identified a novel and distinct fibrosis subset of NAFLD. The fibrosis subset is significantly correlated with the profibrotic macrophages and M2 macrophage subset. These two liver macrophage subsets may be important players in the progression of liver fibrosis of NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos/metabolismo , Perfilação da Expressão Gênica
4.
Appl Microbiol Biotechnol ; 107(10): 3257-3271, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071138

RESUMO

Previous studies regarding the gastrointestinal biogeography of microbiomes generally focused on longitudinal comparisons, whereas few studies have compared luminal and mucosal microbiomes. Investigations of the snake gut microbiome have attracted interest because of the unique digestive physiology and hibernation behavior, but adequate sampling methods must be developed. Here, we used an omics approach combining 16S rRNA gene sequencing with untargeted metabolomics to profile the luminal and mucosal gut microbiomes and metabolomes in oriental rat snakes, with the goal of revealing the heterogeneity and co-occurrence at these sites. The α-diversity of the gut microbiome was significantly higher at mucosal sites than at luminal sites. Microbial composition also differed according to sampling site, with significant differences in the abundances of dominant phyla and genera, as well as ß-diversity clustering and distribution. Metabolome profiling revealed differences that were mainly related to cholinergic substances and nucleic acids. Analysis of variations in Kyoto Encyclopedia of Genes and Genomes functions of microbes and metabolites showed that the mucosal microbiome was more frequently involved in genetic information processing and cellular processes, whereas the luminal microbiome generally participated in metabolic regulation. Notably, we found a greater abundance of the opportunistic pathogen genus Escherichia-Shigella at luminal sites and higher levels of the lipid-regulator metabolite fenfluramine at mucosal sites. Despite the extensive differences between the two sampling sites, the results revealed similarities in terms of amplicon sequence variant composition and dominant core microbes. This pilot exploration of luminal and mucosal microbiomes and metabolites provides key insights to guide future research. KEY POINTS: • Snake luminal and mucosal microbiota was distinct in composition and function. • Metabolome profiling revealed differences related to different metabolites. • The pathogenic microbes are more likely to colonize the gut lumina.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Metaboloma , Serpentes/genética
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 676-682, 2023 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-37666757

RESUMO

This paper studies the active force characteristics of the neck muscles under the condition of rapid braking, which can provide theoretical support for reducing the neck injury of pilots when carrier-based aircraft blocks the landing. We carried out static loading and real vehicle braking experiments under rapid braking conditions, collected the active contraction force and electromyography (EMG) signals of neck muscles, and analyzed the response characteristics of neck muscle active force response. The results showed that the head and neck forward tilt time was delayed and the amplitude decreased during neck muscle pre-tightening. The duration of the neck in the extreme position decreased, and the recovery towards the seat direction was faster. The EMG signals of trapezius muscle was higher than sternocleidomastoid muscle. This suggests that pilots can reduce neck injury by pre-tightening the neck muscles during actual braking flight. In addition, we can consider the design of relevant fittings for pre-tightening the neck muscles.


Assuntos
Músculos do Pescoço , Pescoço , Eletromiografia , Cabeça
6.
Endocr J ; 69(8): 971-982, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35321989

RESUMO

Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.


Assuntos
Cumarínicos , Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Humanos , Ratos , Antioxidantes , Glicemia , Cumarínicos/farmacologia , Células Endoteliais , Heme Oxigenase-1/metabolismo , Inflamação , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fator A de Crescimento do Endotélio Vascular
7.
Nanotechnology ; 31(23): 235713, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079007

RESUMO

In this paper, Co9S8 nanoparticles embedded into amorphous carbon have been synthesized by a simple electrospinning method followed by a high-temperature annealing process. The unique structure endows the Co9S8/C composites with excellent electrochemical properties. Co9S8 particles embedded into the carbon matrix show a high Li storage capacity around 1100 and 358 mAhg-1 at a current density of 0.1 and 5.0 Ag-1, respectively. After 200 cycles, an impressive discharge capacity of around 1063.4 mAhg-1 can be obtained at a current density of 0.3 Ag-1.

8.
Nanotechnology ; 31(43): 435701, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32629432

RESUMO

Compared with the common electrospun nanofibers, the alignment of the nanofibers exhibits interesting anisotropic mechanical properties and structural stability. In this paper, semi-aligned PAN@PVdF-HFP nanofiber separators were prepared by a modified electrospinning method. The composite separators exhibit anisotropic mechanical properties and enhanced electrochemical performance compared with electrospun PAN films. The PAN@PVdF-HFP nanofiber separator can deliver an ionic conductivity of 1.2 mSccm-1 with electrochemical stability up to 5.0 V. The LiFePO4/Li cell with semi-aligned PAN@PVdF-HFP separator shows excellent cycling performance, good rate capability, as well as high discharge capacity.

9.
IUBMB Life ; 71(10): 1611-1618, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31317640

RESUMO

High-glucose-induced retinal tissue impairment is the major pathological phenotype of diabetic retinopathy. In an in vitro diabetic apoptosis cell model, we evaluated the function of long noncoding RNA, insulin growth factor 2 antisense (IGF2-AS) in high-glucose-injured human retinal pigment epithelial cells. A human retinal pigment epithelial cell line, ARPE-19 was incubated with high-glucose in vitro to induce apoptosis. SiRNA-mediated IGF2-AS downregulation was conducted in ARPE-19 cells to evaluate its effect on high-glucose induced apoptosis, assessed by a TUNEL assay. qRT-PCR and western blot assays were applied to examine the functional effect of IGF2-AS on IGF2/AKT/Casp-9 expressions in glucose-injured ARPE-19 cells. ART was further knocked down, specifically in IGF2-AS-downregualted ARPE-19 cells, to investigate its functional involvement in IGF2-AS-inhibition-mediated apoptotic protection in glucose-injured ARPE-19 cells. High-glucose induced apoptosis in ARPE-19 cells, and upregulated IGF-2AS in a dose-dependent manner. SiRNA-mediated IGF2-AS downregulation ameliorated apoptosis, upregulated IGF2/AKT and decreased Casp-9, in high-glucose-treated ARPE-19 cells. AKT knockdown was shown to dramatically reverse the preventive effect of IGF2-AS-downregulation on high-glucose-induced apoptosis in ARPE-19 cells. Moreover, it was demonstrated that AKT knockdown directly upregulated Casp-9 in IGF2-AS-downregulated and high-glucose-treated ARPE-19 cells. We demonstrated that inhibiting IGF2-AS, possibly also through activation of AKT signaling pathway, has a protective function in high-glucose-induced apoptosis in human retinal pigment epithelial cells in diabetic retinopathy.


Assuntos
Apoptose/genética , Retinopatia Diabética/genética , Proteínas/genética , Epitélio Pigmentado da Retina/metabolismo , Caspase 9/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/genética
10.
J Nanobiotechnology ; 17(1): 64, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31084611

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a leading cause of severe visual deficits and blindness. Meanwhile, there is convincing evidence implicating oxidative stress, inflammation, and neovascularization in the onset and progression of AMD. Several studies have identified berberine hydrochloride and chrysophanol as potential treatments for ocular diseases based on their antioxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, their poor stability and bioavailability have limited their application. In order to overcome these disadvantages, we prepared a compound liposome system that can entrap these drugs simultaneously using the third polyamidoamine dendrimer (PAMAM G3.0) as a carrier. RESULTS: PAMAM G3.0-coated compound liposomes exhibited appreciable cellular permeability in human corneal epithelial cells and enhanced bio-adhesion on rabbit corneal epithelium. Moreover, coated liposomes greatly improved BBH bioavailability. Further, coated liposomes exhibited obviously protective effects in human retinal pigment epithelial cells and rat retinas after photooxidative retinal injury. Finally, administration of P-CBLs showed no sign of side effects on ocular surface structure in rabbits model. CONCLUSIONS: The PAMAM G3.0-liposome system thus displayed a potential use for treating various ocular diseases.


Assuntos
Antioxidantes/farmacocinética , Dendrímeros/química , Olho/efeitos dos fármacos , Lipossomos/química , Poliaminas/química , Administração Oftálmica , Animais , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Transporte Biológico , Linhagem Celular , Córnea/citologia , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Humanos , Lipossomos/administração & dosagem , Lipossomos/efeitos adversos , Masculino , Imagem Óptica/métodos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Coelhos , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
11.
Pharm Biol ; 57(1): 161-168, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30905278

RESUMO

CONTEXT: ß-Sitosterol (BS), the primary constituent of plants and vegetables, exhibits multiple biological effects. OBJECTIVE: This study explores its effect of immune-regulation on macrophages and its potential for rheumatoid arthritis (RA) therapy. MATERIALS AND METHODS: In vitro, bone marrow-derived macrophages (BMDMs) were treated with 5, 25 and 50 µM BS in the M1 or M2 polarization conditions. In vivo, either i.p. injection with 20 or 50 mg/kg BS every 2 d after boost immunization of collagen-induced arthritis (CIA) or adoptive transfer of 2 × 106 BS-treated BMDMs (BS-BMDMs) at the day before CIA were adopted in mice to test the therapeutic effect. IL-10 antibody depletion was used in the period of above treatments to discuss the underlying mechanism. RESULTS: The phenotypes and function of BMDMs showed that 5, 25 and 50 µM BS significantly repressed the M1 polarization and augmented M2 polarization dependent upon concentration. The expression of iNOS, IL-1ß, CD86 and MHCII in 25 µM BS-treated M1-polarized BMDMs was reduced by 50.2, 47.1, 87.1 and 31.3%, respectively. In contrast, the expression of arginase-1, IL-10, CD163 and CD206 in 25 µM BS-treated M2-polarized BMDMs was increased by 65.6, 107.4, 23.5 and 51.3%, respectively. In CIA mice, either i.p. injection with BS or adoptive transfer of BS-BMDMs could alleviate the symptoms of ankle swelling (vehicle group: 3.13 ± 0.102 mm; 20 mg/kg BS group: 2.64 ± 0.043 mm; 50 mg/kg BS group: 2.36 ± 0.084 mm; BMDMs group: 3.09 ± 0.174 mm; BS-BMDMs group: 2.43 ± 0.042 mm), reduce the levels of collagen-specific antibodies (IgG and IgG1, but not IgG2c, p < 0.05) and inhibit the production of pro-inflammatory cytokines (p < 0.05). Depletion of IL-10 counteracted the effect of BS treatment (α-IL-10 vs. RatIgG1, p < 0.01 on day 16), highlighting the role of IL-10 in the anti-inflammatory response. CONCLUSIONS: These results suggested that BS could modulate the functions of macrophages and might be a promising agent for RA therapy.


Assuntos
Artrite Experimental/tratamento farmacológico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Sitosteroides/farmacologia , Animais , Artrite Experimental/imunologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Citocinas/biossíntese , Citocinas/sangue , Citocinas/imunologia , Relação Dose-Resposta a Droga , Interleucina-10/biossíntese , Interleucina-10/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Biochem Biophys Res Commun ; 495(1): 922-927, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109000

RESUMO

BACKGROUND: In diabetic retinopathy, prolonged high-level blood glucose induced significant impairments among various retinal tissues, including retinal pigment epithelial (RPE) cells. In an in vitro model of human RPE cells, we evaluated whether 7,8-Dihydroxyflavone (DHF) may effectively prevent high glucose-induced diabetic apoptosis among human RPE cells. METHOD: ARPE-19 cells, a Human RPE cell line, were treated with d-glucose (50 mM) to induce apoptosis in vitro. Prior to glucose, ARPE-19 cells were pre-incubated with various concentrations of DHF. The effect of DHF on d-glucose-induced apoptosis was examined by TUNEL assay, in a concentration-dependent manner. The biological effects of DHF on Caspase-9 (Casp-9) and TrkB signaling pathways in d-glucose-injured ARPE-19 cells were evaluated by qRT-PCR and western blot (WB) assays. A TrkB antagonist, K252a, was also applied in DHF and d-glucose treated ARPE-19 cells. Possible effect of K252a blocking TrkB signaling pathway, thus reversing DHF-modulated apoptosis prevention was also examined by TUNEL and WB assays. RESULTS: DHF ameliorated d-glucose-induced diabetic apoptosis in ARPE-19 cells. Apoptotic factor Casp-9, at both mRNA and protein levels, were drastically inhibited by DHF in d-glucose-injured ARPE-19 cells. Also, DHF activated TrkB signaling pathway through phosphorylation. K252a dramatically reversed the preventive effect of DHF on d-glucose-induced apoptosis in ARPE-19 cells. Further investigation showed that K252a functioned through de-activating or de-phosphorylating TrkB signaling pathway. CONCLUSION: This work demonstrates that DHF, through activation of TrkB signaling pathway, has a preventive function in d-glucose-induced apoptosis in PRE cells in diabetic retinopathy.


Assuntos
Retinopatia Diabética/metabolismo , Retinopatia Diabética/prevenção & controle , Flavanonas/administração & dosagem , Glucose , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Retinopatia Diabética/induzido quimicamente , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos
14.
Nanotechnology ; 27(17): 175402, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26965193

RESUMO

MoS2 with a similar layered structure to graphene has been widely applied in various areas including lithium ion batteries. However, low conductivity, capacity fading and poor rate performance are still the main challenges for MoS2 anode materials. In this work, for the first time, we prepared nitrogen-doped MoS2 (N-MoS2) nanosheets through a simple two-step method involving the preparation of MoS2 with defects by the hydrothermal method, followed by sintering in a NH3 atmosphere. Our electrochemical characterizations and density functional theory calculations demonstrated that nitrogen doping could enhance the electron conductivity and showed higher specific capacity than pristine MoS2 as anode materials of lithium ion batteries, which can be attributed to the faster transportation of electrons and ions because of nitrogen doping. This work helps us understand the origin of the enhanced performance of N-doped MoS2 in lithium ion batteries.

15.
Am J Physiol Lung Cell Mol Physiol ; 307(11): L829-37, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172909

RESUMO

Lung alveolar epithelial cells are exposed to hypoxia under a variety of physiological and pathological conditions. It has been shown recently that miR-143, which can directly target the key glycolytic enzyme hexokinase II (HK2), may be regulated by miR-155. We investigated whether microRNAs contribute to the cellular glycolysis in response to hypoxia. Using the A549 cells, we found that the expression of Dicer is decreased under hypoxia. When Dicer was knocked down with small-interfering RNA (siRNA), pre-miR143 was increased and mature miR-143 was decreased as that in hypoxia, indicating that reduction of Dicer is responsible for the change of miR-143 under hypoxia. Interestingly, both hypoxia and knockdown of Dicer resulted in miR-155 and pre-miR-155 expression increases. We also examined the expression of HK2 and glucose metabolism in the cells. Both HK2 mRNA and protein were increased under hypoxia, which is accompanied by an increase of glucose uptake and production of lactate. The same alterations were found with siRNA Dicer knockdown. Moreover, transfection with anti-miR-143 also led to a HK2 production and an increase of glucose uptake and lactate production, whereas anti-miR-155 had opposite effects. The miR-143 and anti-miR-155 transfection resulted in a significant cell apoptosis. The expression of Dicer was decreased with HK2 accumulating in mouse lung tissues under hypoxia identified by immunohistochemistry. The changes of miR-143 and miR-155 were similar to those in A549 cells. Our data demonstrate that Dicer regulation of miRNAs promotes HK2 activation and glycolysis, which might protect the cell from hypoxic damage and enter into an adaptive process.


Assuntos
Hipóxia Celular/fisiologia , Hexoquinase/metabolismo , MicroRNAs/biossíntese , Ribonuclease III/genética , Animais , Apoptose/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/fisiologia , Hexoquinase/biossíntese , Hexoquinase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Ácido Láctico/biossíntese , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Ribonuclease III/biossíntese
16.
Adv Sci (Weinh) ; 11(16): e2304381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380526

RESUMO

This work aims to explore the long-term prognosis of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). In this prospective study, eligible inpatients with HBV-ACLF are enrolled and followed up from December 2012 to February 2023, for clinical events, laboratory tests at least every 6 months. Overall, the survival rates at 28 days, 90 days, 1 year, 5 years, and 8 years are 64.7%, 48.8%, 46.1%, 43.8%, and 42.2%, respectively. Among the 8-year mortality and liver transplant cases, ACLF survivors (who survived over 90 days) accounted for 7.8% (9/115). Among 101 patients who survived for more than 90 days, 97.9% of patients achieve virologic response at 1 year. For HBeAg-positive patients, the HBeAg seroconversion are 25.5%, 63.6%, and 76.9% at 1, 5, and 8 years, respectively. Alanine aminotransferase, aspartate aminotransferase, total bilirubin, INR, white blood cell count, and albumin levels gradually improve within the first year. Fibrosis biomarkers APRI, FIB-4 and Chitinase-3-like protein 1 (CHI3L1) levels decreases within the first 5 years. The Cox proportional hazards regression reveal that high total bilirubin (HR = 1.008, p = 0.021) is the independent risk factor for 8-year survival of ALCF survivors. The 90-day period following of HBV-ACLF represented a critical juncture for long-term prognosis, revealing favorable outcomes beyond this timeframe.


Assuntos
Insuficiência Hepática Crônica Agudizada , Humanos , Masculino , Feminino , Estudos Prospectivos , Prognóstico , Adulto , Estudos Longitudinais , Insuficiência Hepática Crônica Agudizada/mortalidade , Pessoa de Meia-Idade , Estudos de Coortes , Taxa de Sobrevida , Análise de Sobrevida , Vírus da Hepatite B , Hepatite B Crônica/complicações , Hepatite B Crônica/mortalidade
18.
Clin Exp Med ; 23(8): 4695-4706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572155

RESUMO

Rheumatoid arthritis (RA) is more common in women, and many reports of sex differences have been reported in various aspects of RA. However, there has been a lack of specific research on women's gut flora. To assess the association between the gut flora and RA patients, this study combined the microbiome with metabolomics. Fecal samples from RA patients and healthy controls were collected for 16S rRNA sequencing. Nontargeted liquid chromatography-mass spectrometry was used to detect metabolites in fecal samples. We comprehensively used various analytical methods to reveal changes in intestinal flora and metabolites in female patients. The gut flora of RA patients was significantly different from that of healthy women. The abundance of Bacteroides, Megamonas and Oscillospira was higher in RA patients, while the abundance of Prevotella, Gemmiger and Roseburia was lower than that of healthy women. Gemmiger, Bilophila and Odoribacter represented large differences in microflora between RA and healthy women and could be used as potential microorganisms in the diagnosis. Fatty acid biosynthesis was significantly different between RA patients and healthy women in terms of metabolic pathways. There were different degrees of correlation between the gut flora and metabolites. Lys-Phe-Lys and heptadecasphin-4-enine can be used as potential markers for RA diagnosis. There was an extremely significant positive correlation between Megamonas, Dialister and rheumatoid factors, which was found for the first time. These findings indicated that alterations of these gut microbiome and metabolome may contribute to the diagnosis and treatment of RA patients.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Humanos , Feminino , Masculino , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Artrite Reumatoide/metabolismo , Metaboloma , Fator Reumatoide
19.
Endocr Connect ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562664

RESUMO

Background: Fibrosis is an important pathological process in the development of non-alcoholic steatohepatitis (NASH), and the activation of hepatic stellate cell (HSC) is a central event in liver fibrosis. However, the transcriptomic change of activated HSCs (aHSCs) and resting HSCs (rHSCs) in NASH patients has not been assessed. This study aimed to identify transcriptomic signature of HSCs during the development of NASH and the underlying key functional pathways. Methods: NASH-associated transcriptomic change of HSCs was defined by single-cell RNA-sequencing (scRNA-seq) analysis, and those top upregulated genes were identified as NASH-associated transcriptomic signatures. Those functional pathways involved in the NASH-associated transcriptomic change of aHSCs were explored by weighted gene co-expression network analysis (WGCNA) and functional enrichment analyses. Key regulators were explored by upstream regulator analysis and transcription factor enrichment analysis. Results: scRNA-seq analysis identified numerous differentially expressed genes in both rHSCs and aHSCs between NASH patients and healthy controls. Both scRNA-seq analysis and in-vivo experiments showed the existence of rHSCs (mainly expressing a-SMA) in the normal liver and the increased aHSCs (mainly expressing collagen 1) in the fibrosis liver tissues. NASH-associated transcriptomic signature of rHSC (NASHrHSCsignature) and NASH-associated transcriptomic signature of aHSC (NASHaHSCsignature) were identified. WGCNA revealed the main pathways correlated with the transcriptomic change of aHSCs. Several key upstream regulators and transcription factors for determining the functional change of aHSCs in NASH were identified. Conclusion: This study developed a useful transcriptomic signature with the potential in assessing fibrosis severity in the development of NASH. This study also identified the main pathways in the activation of HSCs during the development of NASH.

20.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708451

RESUMO

BACKGROUND: Acute-on-chronic liver failure (ACLF) is an acute decompensated syndrome based on chronic liver disease, while neutrophil recruitment is the most critical early step. C-X-C motif chemokine ligand 1 (CXCL1), a cytokine that recruits neutrophils, was significantly upregulated in both ACLF mice and patients with ACLF. This present study aims to explore the role of CXCL1 in the pathogenesis of ACLF. METHODS: We established an ACLF mouse model induced by carbon tetrachloride, lipopolysaccharide, and D-galactosamine, and used adeno-associated virus to achieve overexpression and knockdown of Cxcl1. We employed mass cytometry, flow cytometry, multiplex cytokine and chemokine analysis, Western blot, and reactive oxygen species (ROS) detection in mice blood and liver. ACLF patients (n = 10) and healthy controls (n = 5) were included, and their liver samples were stained using multiplex immunohistochemistry techniques. RESULTS: CXCL1 was significantly elevated in both ACLF mice and patients. CXCL1 recruits neutrophils by binding to the C-X-C motif chemokine receptor 2 on the surface of neutrophils, affects ACLF prognosis by generating ROS and mitochondrial depolarization and modulating caspase3-related apoptotic pathways. We found that the knockdown of CXCL1 attenuated the infiltration of neutrophils in the mouse liver, reduced the expression of inflammatory cytokines, and also significantly downregulated ROS production and caspase3-related hepatocyte apoptosis, thereby ameliorating the liver injury of ACLF. CONCLUSIONS: CXCL1 is a core player in the mobilization of neutrophils in ACLF, and the knockdown of Cxcl1 improves neutrophil infiltration, reduces ROS levels, and reduces hepatocyte apoptosis, thereby attenuating inflammation and liver injury in ACLF. Our results revealed a previously unknown link between CXCL1-induced neutrophil recruitment and ACLF, providing evidencing for potential therapies targeting ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Animais , Camundongos , Insuficiência Hepática Crônica Agudizada/genética , Apoptose/genética , Citocinas , Hepatócitos , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa