RESUMO
BACKGROUND: Cardamine violifolia is a significant Brassicaceae plant known for its high selenium (Se) accumulation capacity, serving as an essential source of Se for both humans and animals. WRKY transcription factors play crucial roles in plant responses to various biotic and abiotic stresses, including cadmium stress, iron deficiency, and Se tolerance. However, the molecular mechanism of CvWRKY in Se accumulation is not completely clear. RESULTS: In this study, 120 WRKYs with conserved domains were identified from C. violifolia and classified into three groups based on phylogenetic relationships, with Group II further subdivided into five subgroups. Gene structure analysis revealed WRKY variations and mutations within the CvWRKYs. Segmental duplication events were identified as the primary driving force behind the expansion of the CvWRKY family, with numerous stress-responsive cis-acting elements found in the promoters of CvWRKYs. Transcriptome analysis of plants treated with exogenous Se and determination of Se levels revealed a strong positive correlation between the expression levels of CvWRKY034 and the Se content. Moreover, CvWRKY021 and CvWRKY099 exhibited high homology with AtWRKY47, a gene involved in regulating Se accumulation in Arabidopsis thaliana. The WRKY domains of CvWRKY021 and AtWRKY47 were highly conserved, and transcriptome data analysis revealed that CvWRKY021 responded to Na2SeO4 induction, showing a positive correlation with the concentration of Na2SeO4 treatment. Under the induction of Na2SeO3, CvWRKY021 and CvWRKY034 were significantly upregulated in the roots but downregulated in the shoots, and the Se content in the roots increased significantly and was mainly concentrated in the roots. CvWRKY021 and CvWRKY034 may be involved in the accumulation of Se in roots. CONCLUSIONS: The results of this study elucidate the evolution of CvWRKYs in the C. violifolia genome and provide valuable resources for further understanding the functional characteristics of WRKYs related to Se hyperaccumulation in C. violifolia.
Assuntos
Cardamine , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Selênio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cardamine/genética , Cardamine/metabolismo , Selênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Perfilação da Expressão GênicaRESUMO
A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.
RESUMO
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
RESUMO
OBJECTIVES: Periodontitis is closely associated with kidney disease and reactive oxygen species (ROS) involvement. Mitochondria are the primary source of both endogenous ROS and renal energy. We investigated whether resveratrol (RSV) prevents renal injury and mitochondrial dysfunction in periodontitis rats. METHODS: Thirty male Wistar rats were divided into control, experimental periodontitis (Ep) and Ep-RSV groups. To induce periodontitis, a steel ligature was placed on the cervix of the bilateral first maxillary molars. RSV (50 mg/kg/day) to the Ep-RSV group and vehicle to the Ep and control groups were gavaged. After 8 weeks, alveolar bone loss, pocket depth, gingival blood index and tooth mobility were assessed. Oxidative stress parameters, mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial ROS, adenosine triphosphate (ATP), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were analysed in renal. Renal function and histology were also evaluated. RESULTS: Compared with the control group, the Ep group showed renal structural destruction, elevated oxidative stress levels, mitochondrial structure destruction, MMP loss, mitochondrial ROS accumulation, ATP reduction, and decreased SIRT1 and PGC-1α levels. RSV prevented these destruction (p < 0.05). However, there was no significant impairment in renal function (p > 0.05). CONCLUSIONS: Periodontitis induces mitochondrial dysfunction in renal tissues. Resveratrol exerts a preventive effect on periodontitis-induced kidney injury by preventing mitochondrial dysfunction.
Assuntos
Periodontite , Sirtuína 1 , Feminino , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ratos Wistar , Estresse Oxidativo , Periodontite/complicações , Periodontite/prevenção & controle , Periodontite/metabolismo , Rim/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologiaRESUMO
Pancreatic cancer is one of the most lethal gastrointestinal tumours, the most common pathological type is pancreatic adenocarcinoma (PAAD). In recent year, immune imbalanced in tumour microenvironment has been shown to play an important role in the evolution of tumours progression, and the efficacy of immunotherapy has been gradually demonstrated in clinical practice. In this study, we propose to construct an immune-related prognostic risk model based on immune-related genes MMP14 and INHBA expression that can assess the prognosis of pancreatic cancer patients and identify potential therapeutic targets for pancreatic cancer, to provide new ideas for the treatment of pancreatic cancer. We also investigate the correlation between macrophage infiltration and MMP14 and INHBA expression. First, the gene expression data of pancreatic cancer and normal pancreatic tissue were obtained from The Cancer Genome Atlas Program (TCGA) and The Genotype-Tissue Expression public database (GTEx). The differentially expressed immune-related genes between pancreatic cancer samples and normal sample were screened by R software. Secondly, univariate Cox regression analysis were used to evaluate the relationship between immune-related genes and the prognosis of pancreatic cancer patients. A polygenic risk score model was constructed by Cox regression analysis. The prognostic nomogram was constructed, and its performance was evaluated comprehensively by internal calibration curve and C-index. Using the risk model, each patient gets a risk score, and was divided into high- or low- risk groups. The proportion of 22 types of immune cells infiltration in pancreatic cancer samples was inferred by CIBERSOFT algorithm, correlation analysis (Pearson method) was used to analyse the correlation between the immune-related genes and immunes cells. Then, we applied macrophage conditioned medium to culture pancreatic cancer cell line PANC1, detected the expression of MMP14 and INHBA by qRT-PCR and Western blot methods. Knock-down MMP14 and INHBA in PANC1 cells by transfected with shRNA lentiviruses. Detection of migration ability of pancreatic cells was done by trans-well cell migration assay. A subcutaneous xenograft tumour model of human pancreatic cancer in nude mice was constructed. In conclusion, an immune-related gene prognostic model was constructed, patients with high-risk scores have poorer survival status, M2-phenotype tumour-associated macrophages (TAMs) up-regulate two immune-related genes, MMP14 and INHBA, which were used to establish the prognostic model. Knock-down of MMP14 and INHBA inhibited invasion of pancreatic cancer.
Assuntos
Adenocarcinoma , Subunidades beta de Inibinas/metabolismo , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animais , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Microambiente Tumoral/genética , Macrófagos Associados a Tumor , Neoplasias PancreáticasRESUMO
Non-small-cell lung cancer (NSCLC), with its aggressive biological behavior, is one of the most diagnosed cancers. Tumor-associated inflammatory cells play important roles in the interaction between chronic inflammation and lung cancer, however the mechanisms involved are far from defined. In the present study, by developing an orthotopic NSCLC mouse model based on chronic inflammation, we proved that an inflammatory microenvironment accelerated the growth of orthotopic xenografts in vivo. Tumor-associated macrophages, the most abundant population of inflammatory cells, were identified. Treatment with macrophage-conditioned medium (MCM) promoted the growth and migration of NSCLC cells. Using bioinformatics analysis, we identified downregulated PP2Ac expression in NSCLC cells upon treatment with MCM. We further confirmed that this downregulation was executed in an NF-κB pathway-dependent manner. As IκB kinase (IKK) has been proved to be a substrate of PP2Ac, inhibition on PP2Ac could result in amplification of NF-κB pathway signaling. Overexpression of PP2Ac, or the dominant-negative forms of IKK or IκB, attenuated the acceleration of growth and metastasis by MCM. Using bioinformatics analysis, we further identified that CXCL1 and COL6A1 could be downstream of NF-κB/PP2Ac pathway. Luciferase assay and ChIP assay further confirmed the location of response elements on the promoter regions of CXCL1 and COL6A1. Elevated CXCL1 facilitated angiogenesis, whereas upregulated COL6A1 promoted proliferation and migration.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Proteína Fosfatase 2/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica , Proteína Fosfatase 2/genética , Transdução de SinaisRESUMO
BACKGROUND: Ginkgo biloba, a typical dioecious plant, is a traditional medicinal plant widely planted. However, it has a long juvenile period, which severely affected the breeding and cultivation of superior ginkgo varieties. RESULTS: In order to clarify the complex mechanism of sexual differentiation in G. biloba strobili. Here, a total of 3293 miRNAs were identified in buds and strobili of G. biloba, including 1085 known miRNAs and 2208 novel miRNAs using the three sequencing approaches of transcriptome, small RNA, and degradome. Comparative transcriptome analysis screened 4346 and 7087 differentially expressed genes (DEGs) in male buds (MB) _vs_ female buds (FB) and microstrobilus (MS) _vs_ ovulate strobilus (OS), respectively. A total of 6032 target genes were predicted for differentially expressed miRNA. The combined analysis of both small RNA and transcriptome datasets identified 51 miRNA-mRNA interaction pairs that may be involved in the process of G. biloba strobili sexual differentiation, of which 15 pairs were verified in the analysis of degradome sequencing. CONCLUSIONS: The comprehensive analysis of the small RNA, RNA and degradome sequencing data in this study provided candidate genes and clarified the regulatory mechanism of sexual differentiation of G. biloba strobili from multiple perspectives.
Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Flores/ultraestrutura , Ginkgo biloba/genética , MicroRNAs/genética , RNA de Plantas/genética , Diferenciação Sexual/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ginkgo biloba/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Análise de Sequência de RNA , TranscriptomaRESUMO
The catalytic conversion of dinitrogen (N2 ) into ammonia under ambient conditions represents one of the Holy Grails in sustainable chemistry. As a potential alternative to the Haber-Bosch process, the electrochemical reduction of N2 to NH3 is attractive owing to its renewability and flexibility, as well as its sustainability for producing and storing value-added chemicals from the abundant feedstock of water and nitrogen on earth. However, owing to the kinetically complex and energetically challenging N2 reduction reaction (NRR) process, NRR electrocatalysts with high catalytic activity and high selectivity are rare. In this contribution, as a proof-of-concept, we demonstrate that both the NH3 yield and faradaic efficiency (FE) under ambient conditions can be improved by modification of the hematite nanostructure surface. Introducing more oxygen vacancies to the hematite surface renders an improved performance in NRR, which leads to an average NH3 production rate of 0.46â µg h-1 cm-2 and an NH3 FE of 6.04 % at -0.9â V vs. Ag/AgCl in 0.10 m KOH electrolyte. The durability of the electrochemical system was also investigated. A surprisingly high average NH3 production rate of 1.45â µg h-1 cm-2 and a NH3 FE of 8.28 % were achieved after the first 1â h chronoamperometry test. This is among the highest FEs reported so far for non-precious-metal catalysts that use a polymer-electrolyte-membrane cell and is much higher than the FE of precious-metal catalysts (e.g., Ru/C) under comparable reaction conditions. However, the NH3 yield and the FE dropped to 0.29â µg h-1 cm-2 and 2.74 %, respectively, after 16â h of chronoamperometry tests, which indicates poor durability of the system. Our results demonstrate the important role that the surface states of transition-metal oxides have in promoting electrocatalytic NRR under ambient conditions. This work may spur interest towards the rational design of electrocatalysts as well as electrochemical systems for NRR, with emphasis on the issue of stability.
RESUMO
OBJECTIVE: This study aimed to investigate the relationship between metabolic syndrome (MetS) and physical activity (PA) in different domains among male coal miners of Shanxi Province in China. METHOD: The study was conducted from July 2013 to December 2013. A two-stage stratified cluster sampling method was used. Data regarding the general information of participants were collected by well-trained interviewers. MetS was defined according to IDF criteria. Self-reported PA was obtained with the IPAQ and categorized into three tertiles of intensity levels across occupation, transportation, household, and leisure-time domains. Univariate and multiple logistic regression analysis were applied to compute the odds ratios and their 95% confidence interval (CI). RESULTS: A total of 3076 males aged 18-65 years old were recruited in this cross-sectional study. The prevalence of MetS was 40.5% in the study subjects. The percentages of vigorous-intensity PA in MetS and non-MetS groups were 70.07% and 62.92%, respectively. Participants spent most of their time on occupation (2034 MET-min/w) and transportation (693MET-min/w) domains. Higher-intensity levels in occupation domains were significantly associated with lower risk of MetS (OR: 0.759, 95% CI: 0.633-0.911; OR: 0.627, 95% CI: 0.516-0.762). CONCLUSIONS: Across four types of workers, the relationships between PA domains and MetS were different. For underground and underground auxiliary workers, the negative relationship was found between occupation PA and MetS. For office workers, the negative relationship was found between household PA and MetS. For ground workers, only leisure-time PA had positively related to MetS.
Assuntos
Exercício Físico , Síndrome Metabólica/epidemiologia , Mineradores , Adolescente , Adulto , Idoso , China , Análise por Conglomerados , Minas de Carvão , Estudos Transversais , Humanos , Masculino , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Tamanho da Amostra , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto JovemRESUMO
BACKGROUND: Diazotrophic (nitrogen-fixing) Gram-positive and endospore-formed Paenibacillus spp. have potential uses as a bacterial fertilizer in agriculture. The transcriptional analysis of nitrogen fixation in Paenibacillus is lacking, although regulation mechanisms of nitrogen fixation have been well studied in Gram-negative diazotrophs. RESULTS: Here we report a global transcriptional profiling analysis of nitrogen fixation in Paenibacillus sp. WLY78 cultured under N2-fixing condition (without O2 and NH4(+)) and non-N2-fixing condition (air and 100 mM NH4(+)). The nif (nitrogen fixation) gene operon composed of 9 genes (nifBHDKENXhesAnifV) in this bacterium was significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition, indicating that nif gene transcription is strictly controlled by NH4(+) and O2. qRT-PCR confirmed that these nif genes were differently expressed. Non-nif genes specifically required in nitrogen fixation, such as mod, feoAB and cys encoding transporters of Mo, Fe and S atoms, were coordinately transcribed with nif genes in N2-fixing condition. The transcript abundance of suf operon specific for synthesis of Fe-S cluster was up-regulated in N2-fixing condition, suggesting that Sul system, which takes place of nifS and nifU, plays important role in the synthesis of nitrogenase. We discover potential specific electron transporters which might provide electron from Fe protein to MoFe protein of nitrogenase. The glnR whose predicted protein might mediate nif transcription regulation by NH4(+) is significantly up-regulated in N2-fixing condition. The transcription levels of nitrogen metabolism and anaerobic respiration were also analyzed. CONCLUSIONS: The nif gene operon (nifBHDKENXhesAnifV) in Paenibacillus sp. WLY78 is significantly up-regulated in N2-fixing condition compared to non-N2-fixing condition. Non-nif genes specifically required in nitrogen fixation were also significantly up-regulated in N2-fixing condition. Fur and Fnr which are involved in anaerobic regulation and GlnR which might mediate nif gene transcription regulation by NH4(+) were significantly up-regulated in N2-fixing condition. This study provides valuable insights into nitrogen fixation process and regulation in Gram-positive firmicutes.
Assuntos
Genoma Bacteriano , Fixação de Nitrogênio , Paenibacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Óperon , Paenibacillus/fisiologiaRESUMO
BACKGROUND: Nitrogen fixation has been established in protokaryotic model Escherichia coli by transferring a minimal nif gene cluster composed of 9 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV) from Paenibacillus sp. WLY78. However, the nitrogenase activity in the recombinant E. coli 78-7 is only 10 % of that observed in wild-type Paenibacillus. Thus, it is necessary to increase nitrogenase activity through synthetic biology. RESULTS: In order to increase nitrogenase activity in heterologous host, a total of 28 selected genes from Paenibacillus sp. WLY78 and Klebsiella oxytoca were placed under the control of Paenibacillus nif promoter in two different vectors and then they are separately or combinationally transferred to the recombinant E. coli 78-7. Our results demonstrate that Paenibacillus suf operon (Fe-S cluster assembly) and the potential electron transport genes pfoAB, fldA and fer can increase nitrogenase activity. Also, K. oxytoca nifSU (Fe-S cluster assembly) and nifFJ (electron transport specific for nitrogenase) can increase nitrogenase activity. Especially, the combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity. However, K. oxytoca nifWZM and nifQ can not increase activity. CONCLUSION: The combined assembly of the potential Paenibacillus electron transporter genes (pfoABfldA) with K. oxytoca nifSU recovers 50.1 % of wild-type (Paenibacillus) activity in the recombinant E. coli 78-7. Our results will provide valuable insights for the enhancement of nitrogenase activity in heterogeneous host and will provide guidance for engineering cereal plants with minimal nif genes.
Assuntos
Nitrogenase/metabolismo , Biologia Sintética/métodos , Transporte de Elétrons , Escherichia coli/metabolismo , Genes Bacterianos , Proteínas Ferro-Enxofre/metabolismo , Klebsiella/enzimologia , Klebsiella/genética , Família Multigênica , Paenibacillus/enzimologia , Paenibacillus/genética , Recombinação Genética/genéticaRESUMO
Digital transformation and green innovation are powerful initiatives to achieve carbon peaking, carbon neutrality targets and high-quality economic development. Using a sample of high energy-consuming listed enterprises from 2012 to 2021, a double fixed-effect model is constructed to verify the effect of green innovation on the carbon emission reduction performance of high energy-consuming enterprises, and digital transformation is used as a moderating variable to analyze the inner mechanism of green innovation affecting the carbon emission reduction performance of high energy-consuming enterprises under the effect of digital transformation. The empirical results show that green innovation can significantly improve the carbon emission reduction performance of energy-consuming enterprises, while digital transformation positively moderates the effect of green innovation on the carbon emission reduction performance of energy-consuming enterprises. When considering the industry heterogeneity, the moderation effect of digital transformation is significant in the chemical raw materials and chemical products manufacturing industry and the electricity and heat production and supply industry, but the petroleum processing and coking and nuclear fuel processing industry, the non-metallic mineral products industry, the ferrous metal smelting and rolling processing industry and the non-ferrous metal smelting and rolling processing industry are not yet significantly affected by green innovation and digital transformation. The findings of the study provide empirical evidence to promote the improvement of carbon emission reduction performance of energy-intensive enterprises in China and to achieve the "double carbon" target.
RESUMO
Objective: The present study aimed to explore the potential causal relationship between childhood asthma and chronic obstructive pulmonary disease (COPD) in European and East Asian populations with Mendelian randomization (MR) analysis. Methods: Based on summary data from genome-wide association studies, single nucleotide polymorphisms (SNPs) associated with childhood asthma were used as instrumental variables. The MR analysis employed the inverse variance weighting, MR-Egger regression and weighted median method to estimate the causal effect between childhood asthma and COPD in European and East Asian populations. Cochran's Q test, MR-PRESSO method and MR-Egger intercept were used to detect heterogeneity, outliers and horizontal pleiotropy, respectively. Leave-one-out analysis applied to assess the effect of removing individual SNP on the estimate of causal association. Results: The MR analysis showed no genetic causal relationship between childhood asthma and COPD. The results of Cochran's Q test, MR-PRESSO and MR-Egger regression indicated the absence of heterogeneity, outliers and horizontal pleiotropy, respectively. Leave-one-out analysis showed no significant difference in the statistical results after exclusion of single SNPs. Conclusions: The MR analysis revealed that there is no causal relationship between childhood asthma and COPD at the genetic level in both European and East Asian populations. Additionally, due to the presence of shared confounding factors and pathogenic genes, further research is needed to comprehensively assess the relationship between childhood asthma and COPD.
RESUMO
Acute kidney injury (AKI) is a prevalent and potentially life-threatening complication characterized by a high incidence and mortality. A large number of studies have emphasized the role of ferroptosis in AKI. Moreover, FBXW7, a ubiquitin ligase, has been implicated in acute organ injury. Analysis of the GEO database (GSE98622) revealed increased FBXW7 mRNA levels in the kidney following ischemiaâreperfusion (IR). However, the role of FBXW7 in AKI has not been elucidated. Therefore, this study aimed to investigate the role of FBXW7 in IR-AKI and its underlying mechanisms. Here, we found that IR could induce AKI and increase FBXW7 expression, while the ferroptosis inhibitor Fer-1 alleviated AKI and decreased FBXW7 expression. Furthermore, we treated HK-2 cells with hypoxia for 12 h and reoxygenation for 4 h (H12R4) to simulate IR-AKI and investigated the impact of modulating FBXW7 expression on ferroptosis by employing ferroptosis-related agonists or inhibitors. Our findings revealed that H12R4 induced HK2 ferroptosis and increased the expression of FBXW7. FBXW7 overexpression in control cells exacerbated erastin-induced ferroptosis, and FBXW7 knockdown inhibited ferroptosis in H12R4-treated cells. Mechanistically, we confirmed that FBXW7 can bind to GPX4, a key molecule that inhibits ferroptosis. The half-life of the GPX4 protein decreased after FBXW7 overexpression, GPX4 ubiquitination increased after H12R4, and GPX4 degradation decreased after FBXW7 knockdown. In conclusion, our results indicated that FBXW7 plays an important role in the development of IR-AKI by promoting ferroptosis through the downregulation of GPX4 expression. This study provides new insight into FBXW7 as a potential target for treating AKI.
RESUMO
The adsorption behaviors of biochar are largely impacted by biomassfeedstock. In this study, two biochars were prepared from torrefaction of ammonium persulfate- and potassium persulfate-pretreated bamboo and then activated by cold alkali, which are named as ASBC and KSBC, respectively. The two biochars were characterized by different instruments, and their adsorption properties over cationic methylene blue (MB) were compared. The type of persulfates little affected the specific surface areas, but significantly impacted O (29.54 % vs. 35.113 %) and N (12.13 % vs. 3.74 %) contents, functional groups, and zeta potentials of biochars. MB adsorption onto ASBC/KSBC is a single-layer chemical endothermic process and ASBC/KSBC exhibit high adsorption capacity over MB (475/881 mg·g-1) at 303 K. Obviously, the sorption capacity of MB onto KSBC much surpasses that of MB onto ASBC. These results indicate biomass pre-treatment is a cheap and convenient method to prepare biochars with unique physicochemical and adsorptive properties.
Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Álcalis , Azul de Metileno/química , Poluentes Químicos da Água/químicaRESUMO
4-Coumarate-CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue-specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall-related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.
Assuntos
Clonagem Molecular , Ginkgo biloba , Lignina , Proteínas de Plantas , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Objective: To explore the spatial relationship between A1 segment proximal anterior cerebral artery aneurysms and their main trunks, classify them anatomically and develop targeted treatment strategies. Methods: This single-center retrospective analysis involved 39 patients diagnosed with aneurysms originating from the proximal of A1 segment of the anterior cerebral artery (2014-2023). Classify the patient's aneurysm into 5 types based on the location of the neck involving the carrier artery and the spatial relationship and projection direction of the aneurysm body with the carrier artery, and outcomes from treatment methods were compared. Results: Among 39 aneurysms, 18 cases underwent endovascular intervention treatment, including 6 cases of stent assisted embolization, 1 case of flow-diverter embolization, 5 cases of balloon assisted embolization, and 6 cases of simple coiling. At discharged, the mRS score of all endovascularly treated patients was 0, and the GOS score was 5 at 6 months after discharge. At discharge, the mRS score of microsurgical clipping treated patients was 0 for 15 cases, 3 for 1 case, 4 for 1 case and 5 for 2 cases. Six months after discharge, the GOS score was 5 for 16 cases, 4 for 2 cases, 3 for 2 cases, and 1 for 1 case. GOS outcomes at 6 months were better for endovascularly treated patients (p = 0.047). Conclusion: Results showed better outcomes for the endovascular treatment group compared to microsurgical clipping at 6 months after surgery. The anatomical classification of aneurysms in this region may be of help to develop effective treatment strategies.
RESUMO
Platinum(II) drugs as a first-line anticancer reagent are limited by side effects and drug resistance. Stimuli-responsive nanosystems hold promise for precise spatiotemporal manipulation of drug delivery, with the aim to promote bioavailability and minimize side effects. Herein, a multitargeting octahedral platinum(IV) prodrug with octadecyl aliphatic chain and histone deacetylase inhibitor (phenylbutyric acid, PHB) at axial positions to improve the therapeutic effect of cisplatin was loaded on the upconversion nanoparticles (UCNPs) through hydrophobic interaction. Followed attachment of DSPE-PEG2000 and arginine-glycine-aspartic (RGD) peptide endowed the nanovehicles with high biocompatibility and tumor specificity. The fabricated nanoparticles (UCNP/Pt(IV)-RGD) can be triggered by upconversion luminescence (UCL) irradiation and glutathione (GSH) reduction to controllably release Pt(II) species and PHB, inducing profound cytotoxicity. Both in vitro and in vivo experiments demonstrated that UCNP/Pt(IV)-RGD exhibited remarkable antitumor efficiency, high tumor-targeting specificity, and real-time UCL imaging capacity, presenting an intelligent platinum(IV) prodrug-loaded nanovehicle for UCL-guided dual-stimuli-responsive combination therapy.
Assuntos
Antineoplásicos , Glutationa , Nanopartículas , Oligopeptídeos , Pró-Fármacos , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Glutationa/química , Glutationa/metabolismo , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/diagnóstico por imagem , Oligopeptídeos/química , Platina/química , Platina/farmacologia , Platina/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , ProibitinasRESUMO
The intelligent city pilot policy is a major measure in China to promote urban development from factor driven and investment driven to innovation driven. Intelligent city construction can effectively coordinate specialized production factors and information sharing mechanism, promote digital information technology innovation, promote smart industry cluster, and expand ecological scenarios of clean industry application, so as to reduce carbon emissions. This paper reveals the internal mechanism of intelligent city construction to promote carbon emission reduction. Based on the quasi-natural experiments carried out in three batches of pilot construction of intelligent cities since 2012, the difference-in-difference model (DID) is used to identify its impact on urban carbon emissions. The research results show that the pilot construction of intelligent cities is conducive to reducing carbon emissions, which is still robust under multiple scenarios such as placebo test and endogenous test. Heterogeneity analysis shows that the pilot policies have a more significant carbon emission reduction effect on the Beijing-Tianjin-Hebei urban agglomeration, non-resource-based cities, and non-old industrial bases. After further quantitative analysis of 917 pilot policy texts based on Simhash algorithm, Jieba word segmentation, and word frequency statistics, it is found that intelligent industry policies reduce carbon emissions by driving data elements agglomeration and optimizing industrial structure, while intelligent government and intelligent people's livelihood policies improve energy efficiency and reduce carbon emissions through green technological innovation. Counterfactual tests using machine learning algorithms show that the later the pilot batch, the better the sustainable carbon emission reduction effect of intelligent city pilot policies.
Assuntos
Algoritmos , Carbono , Humanos , Cidades , Pequim , China , Desenvolvimento EconômicoRESUMO
Functionalization can change the physicochemical properties of hydrochar and improve its ability to adsorb pollutants. Herein, a trithiocyanurate-functionalized hydrochar (TTHC) was obtained from acylation of chloroacetyl chloride and hydrochar and modification with trithiocyanuric acid in alkaline conditions. TTHC can efficiently remove cationic methylene blue (MB) and Pb(II) from wastewater. The removal can be expressed with pseudo-second-order kinetic and Langmuir models. The MB and Pb(II) removed uptakes by TTHC at 298 K exceeded 909.9 and 182.8 mg g-1 respectively, and the removal rates reached 90% and 98% within 120 min respectively. Characterizations show TTHC is functionalized with trithiocyanurate, and rich in thiolate and aromaticity, and tends to adsorb MB/Pb(II) via multiple adsorption mechanisms. After five sorption-desorption regeneration cycles, TTHC maintained 80% and 99% adsorption capacities for MB and Pb(II) respectively. Therefore, TTHC is a promising efficient sorbent for removing MB and Pb(II) from effluents.