Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 33(1): 96-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526433

RESUMO

Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type assignment is a crucial step to achieve that. However, the poorly annotated genome and limited known biomarkers hinder us from assigning cell identities for nonmodel species. Here, we design a heterogeneous graph neural network model, CAME, to learn aligned and interpretable cell and gene embeddings for cross-species cell-type assignment and gene module extraction from scRNA-seq data. CAME achieves significant improvements in cell-type characterization across distant species owing to the utilization of non-one-to-one homologous gene mapping ignored by early methods. Our large-scale benchmarking study shows that CAME significantly outperforms five classical methods in terms of cell-type assignment and model robustness to insufficiency and inconsistency of sequencing depths. CAME can transfer the major cell types and interneuron subtypes of human brains to mouse and discover shared cell-type-specific functions in homologous gene modules. CAME can align the trajectories of human and macaque spermatogenesis and reveal their conservative expression dynamics. In short, CAME can make accurate cross-species cell-type assignments even for nonmodel species and uncover shared and divergent characteristics between two species from scRNA-seq data.


Assuntos
Redes Neurais de Computação , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Redes Reguladoras de Genes , Biomarcadores , Genoma , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos
2.
Opt Express ; 32(3): 3597-3605, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297577

RESUMO

We present the performances of a broadband optical parametric chirped pulse amplification (OPCPA) using partially deuterated potassium dihydrogen phosphate (DKDP) crystals with deuteration levels of 70% and 98%. When pumped by a Nd:glass double frequency laser, the OPCPA system using the 98% deuterated DKDP crystal achieves a broad bandwidth of 189 nm (full width at 1/e2 maximum) from 836 nm to 1025 nm. For the DKDP crystal with length of 43 mm, the pump-to-signal conversion efficiency reaches 28.4% and the compressed pulse duration is 13.7 fs. For a 70% deuterated DKDP crystal with a length of 30 mm, the amplified spectrum ranges from 846-1021 nm, the compressed pulse duration is 15.7 fs, and the conversion efficiency is 25.5%. These results demonstrate the potential of DKDP crystals with higher deuteration as promising nonlinear crystals for use as final amplifiers in 100 Petawatt (PW) laser systems, supporting compression pulse duration shorter than 15 fs.

3.
Environ Res ; 241: 117615, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949289

RESUMO

BACKGROUND: Polybrominated diphenyl ethers (PBDEs) are a group of widely used chemicals and humans are exposed to them in their daily life. PBDEs exposure during pregnancy may have adverse effects on pregnant women and their fetuses. Nevertheless, limited information is available on the levels and determinants of PBDEs exposure in Chinese pregnant women. METHODS: The internal exposure levels of eight PBDEs (BDE-28, 47, 99, 100, 153, 154, 183, and 209) in placental samples of 1280 pregnant women from Zunyi birth cohort were analyzed using gas chromatography tandem mass spectrometry. All PBDEs concentrations were lipid adjusted (ng/g lw). Determinants of exposure were assessed by multivariable logistic regression model. RESULTS: Eight PBDE homologues were quantifiable in more than 70% of the samples. The highest median concentrations were found for BDE-209 (2.78 ng/g lw), followed by BDE-153 (1.00 ng/g lw) and BDE-183 (0.93 ng/g lw). The level of ΣPBDEs ranged from 0.90 to 308.78 ng/g lw, with a median concentration of 10.02 ng/g lw. Multivariate logistic regression analysis showed that maternal age older than 30 years old (OR: 1.59; 95% CI: 1.14, 2.23), pre-pregnancy obesity (1.51; 1.08, 2.10), home renovation within 2 years (1.43; 1.08, 1.91), spending more time outdoors during pregnancy (0.70; 0.55, 0.89), high consumption of fish/seafood (1.46; 1.13, 1.90) and eggs (1.44; 1.04, 2.00), male infant sex (1.69; 1.18, 2.42) were associated with PBDEs exposure. CONCLUSION: The study population is generally exposed to PBDEs, of which BDE-209 is the dominant congener, indicating extensive application of products containing deca-BDE mixtures. Maternal age, pre-pregnancy BMI, home decoration, average outdoor time during pregnancy, fish, seafood, eggs consumption, and fetal sex were exposure-determinning factors. This study contributes to the knowledge on region-specific PBDEs contamination in pregnant women and related risk factors.


Assuntos
Éteres Difenil Halogenados , Placenta , Lactente , Animais , Humanos , Feminino , Masculino , Gravidez , Adulto , Placenta/química , Éteres Difenil Halogenados/análise , Gestantes , China
4.
Int Wound J ; 21(4): e14862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572823

RESUMO

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Reepitelização , Mucosa Bucal , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo
5.
Planta ; 257(6): 107, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130977

RESUMO

MAIN CONCLUSION: TabZIP60 is found to interact with TaCDPK30 and act as a positive regulator of ABA synthesis-mediated salt tolerance in wheat. Wheat basic leucine zipper (bZIP) transcription factor (TabZIP60) was previously found to act as a positive regulator of salt resistance. However, its molecular mechanism in response to salt stress in wheat is still unclear. In this study, TabZIP60 was found to interact with wheat calcium-dependent protein kinase (TaCDPK30), which belonged to group III of CDPK family, and was induced by salt, polyethylene glycol, and abscisic acid (ABA) treatments. This mutation of serine 110 in TabZIP60 resulted in no interaction with TaCDPK30. Moreover, TaCDPK30 was involved in interactions with wheat protein phosphatase 2C clade A (TaPP2CA116/TaPP2CA121). TabZIP60-overexpressing wheat plants showed increased salt tolerance, as exhibited by better growth status, higher soluble sugar, and lower malonaldehyde contents of transgenic plants than wild-type wheat cv. Kenong 199 under salt stress. Moreover, transgenic lines showed high ABA content by upregulating ABA synthesis-related gene expression levels. TabZIP60 protein could bind and interact with the promoter of the wheat nine-cis epoxycarotenoid dioxygenase (TaNCED2) gene. Furthermore, TabZIP60 upregulated several stress response gene expression levels, which could also increase the plant's ability to resist salt stress. Thus, these results suggest that TabZIP60 could function as a regulator of ABA synthesis-mediated salt tolerance through interacting with TaCDPK30 in wheat.


Assuntos
Tolerância ao Sal , Triticum , Triticum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética
6.
Opt Express ; 31(24): 40285-40292, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041333

RESUMO

Pre-pulses caused by the post-pulses in the optical parametric chirped-pulse amplifier were comprehensively studied for the first time, including the underlying mechanism for the delay-shift of pre-pulses, the intensity variation of pre-pulses affected by the initial delay of post-pulses and the pump energy, and also the nonlinear beat noise. The simulation and measurement confirmed that the high-order dispersion of the pulse stretcher was the main cause for the delay-shift of pre-pulses, which should be similar with the chirped-pulse amplifiers. The intensity of pre-pulses would decrease significantly as the initial delay of post-pulses increased, but would increase with the growth of pump energy. Moreover, the temporal position of the nonlinear beat noise in the experiment was successfully predicted by our simulation. This work could help us better understand the pre-pulses in OPCPA and provide helpful guidance for designing high-contrast laser systems.

7.
Opt Lett ; 48(7): 1838-1841, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221779

RESUMO

We demonstrate the stable and flexible light delivery of multi-microjoule, sub-200-fs pulses over a ∼10-m-long vacuumized anti-resonant hollow-core fiber (AR-HCF), which was successfully used for high-performance pulse synchronization. Compared with the pulse train launched into the AR-HCF, the transmitted pulse train out of the fiber exhibits excellent stabilities in pulse power and spectrum, with pointing stability largely improved. The walk-off between the fiber-delivery and the other free-space-propagation pulse trains, in an open loop, was measured to be <6 fs root mean square (rms) over 90 minutes, corresponding to a relative optical-path variation of <2 × 10-7. This walk-off can be further suppressed to ∼2 fs rms simply by using an active control loop, highlighting the great application potentials of this AR-HCF setup in large-scale laser and accelerator facilities.

8.
BMC Public Health ; 23(1): 2073, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872621

RESUMO

BACKGROUND: Interrupted time series (ITS) analysis is a growing method for assessing intervention impacts on diseases. However, it remains unstudied how the COVID-19 outbreak impacts gonorrhea. This study aimed to evaluate the effect of COVID-19 on gonorrhea and predict gonorrhea epidemics using the ITS-autoregressive integrated moving average (ARIMA) model. METHODS: The number of gonorrhea cases reported in China from January 2005 to September 2022 was collected. Statistical descriptions were applied to indicate the overall epidemiological characteristics of the data, and then the ITS-ARIMA was established. Additionally, we compared the forecasting abilities of ITS-ARIMA with Bayesian structural time series (BSTS), and discussed the model selection process, transfer function, check model fitting, and interpretation of results. RESULT: During 2005-2022, the total cases of gonorrhea were 2,165,048, with an annual average incidence rate of 8.99 per 100,000 people. The highest incidence rate was 14.2 per 100,000 people in 2005 and the lowest was 6.9 per 100,000 people in 2012. The optimal model was ARIMA (0,1, (1,3)) (0,1,1)12 (Akaike's information criterion = 3293.93). When predicting the gonorrhea incidence, the mean absolute percentage error under the ARIMA (16.45%) was smaller than that under the BSTS (22.48%). The study found a 62.4% reduction in gonorrhea during the first-level response, a 46.47% reduction during the second-level response, and an increase of 3.6% during the third-level response. The final model estimated a step change of - 2171 (95% confidence interval [CI] - 3698 to - 644) cases and an impulse change of - 1359 (95% CI - 2381 to - 338) cases. Using the ITS-ARIMA to evaluate the effect of COVID-19 on gonorrhea, the gonorrhea incidence showed a temporary decline before rebounding to pre-COVID-19 levels in China. CONCLUSION: ITS analysis is a valuable tool for gauging intervention effectiveness, providing flexibility in modelling various impacts. The ITS-ARIMA model can adeptly explain potential trends, autocorrelation, and seasonality. Gonorrhea, marked by periodicity and seasonality, exhibited a downward trend under the influence of COVID-19 intervention. The ITS-ARIMA outperformed the BSTS, offering superior predictive capabilities for the gonorrhea incidence trend in China.


Assuntos
COVID-19 , Gonorreia , Humanos , COVID-19/epidemiologia , Modelos Estatísticos , Fatores de Tempo , Teorema de Bayes , Gonorreia/epidemiologia , China/epidemiologia , Incidência , Previsões
9.
Opt Express ; 30(21): 37293-37302, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258320

RESUMO

In this paper, we report that the angular dispersion of the output pulses in a nonlinear process can be efficiently compensated by using a cascaded prism(s) and short hollow-core fiber (HCF) configuration. Here, the prism(s) is used to suppress the angular dispersion and transform it into spatial chirp, while the HCF is used for removing this spatial chirp and the residual angular dispersion, which can also significantly improve the beam quality. The feasibility of this novel method is numerically and experimentally investigated with the ultra-broadband idler pulses centered at 1250 nm wavelength and generated by an LBO crystal based non-collinear optical parametric amplifier. The proof-of-principle experiment shows that the angular dispersion can be effectively removed and ultra-broadband idler pulses with good spectral quality and spatial profile can be obtained. The total transmission efficiency in the experiment is around 67% and the measured M x2 and M y2 can reach 1.12 and 1.04, respectively. To the best of our knowledge, this is the first reported ultra-broadband angular dispersion compensation scheme combining prism(s) and HCF, which can remarkably eliminate the angular dispersion while simultaneously possesses high efficiency, good spectral and beam spatial quality.

10.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682721

RESUMO

Oxygen evolution reaction (OER) plays a pivotal role in the development of renewable energy methods, such as water-splitting devices and the use of Zn-air batteries. First-row transition metal complexes are promising catalyst candidates due to their excellent electrocatalytic performance, rich abundance, and cheap price. Metalloporphyrins are a class of representative high-efficiency complex catalysts owing to their structural and functional characteristics. However, OER based on porphyrin systems previously have been paid little attention in comparison to the well-described oxygen reduction reaction (ORR), hydrogen evolution reaction, and CO2 reduction reaction. Recently, porphyrin-based systems, including both small molecules and porous polymers for electrochemical OER, are emerging. Accordingly, this review summarizes the recent advances of porphyrin-based systems for electrochemical OER. Firstly, the electrochemical OER for water oxidation is discussed, which shows various methodologies to achieve catalysis from homogeneous to heterogeneous processes. Subsequently, the porphyrin-based catalytic systems for bifunctional oxygen electrocatalysis including both OER and ORR are demonstrated. Finally, the future development of porphyrin-based catalytic systems for electrochemical OER is briefly prospected.


Assuntos
Oxigênio , Porfirinas , Catálise , Oxirredução , Oxigênio/química , Água/química
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887385

RESUMO

Triplet-triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.


Assuntos
Porfirinas , Fotólise , Fótons , Água
12.
Nanotechnology ; 32(37)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34020428

RESUMO

Seawater desalination is vital to our modern civilization. Here, we report that the carbon honeycomb (CHC) has an outstanding water permeability and salt rejection in the seawater desalination, as revealed by molecular dynamics simulations. More than 92% of ions are rejected by CHC at applied pressures ranging from 50 to 250 MPa. CHC has a perfect salt rejection at pressures below 150 Mpa. On increasing the applied pressure up to 150 MPa, the salt rejection reduces only to 92%. Pressure, temperature and temperature gradient are noted to play a significant role in modulating the water flux. The water flux increases with pressure and temperature. With the introduction of a temperature gradient of 3.5 K nm-1, the seawater permeability increases by 33% as compared to room temperature. The water permeability of the CHC is greater than other carbon materials and osmosis membranes including graphene (8.7 times) and graphyne (2.1 times). It indicates the significant potential of the CHC for commercial application in water purification.

13.
Opt Express ; 28(21): 31743-31753, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115140

RESUMO

A novel design of double chirped pulse amplification laser systems implementing a combination of negatively and positively chirped pulse amplification is proposed for the first time. Without utilizing any extra dispersion compensation element, this design can sufficiently cancel out the second-, third- and especially fourth-order dispersion simultaneously, just by optimizing the parameters of the stretcher and compressor in first chirped pulse amplification stage which applies negatively chirped pulse amplification. The numerical results indicate that near Fourier-transform-limited pulse duration about 20fs can be achieved in high-peak-power femtosecond laser systems up to multi-Petawatt level. This design not only provides a feasible solution for the dispersion control in high-contrast and high-peak-power femtosecond laser systems, but also can avoid the degradation of temporal contrast induced by seed energy loss in the presence of additional dispersion compensation components.

14.
Cancer Cell Int ; 20: 502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061854

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) includes lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). MicroRNA (miRNA) plays an important role in the regulation of post-transcriptional gene expression in animals and plants, especially in lung adenocarcinoma. METHODS: MiR-1307-5p is an miRNA with significant differences screened by the second generation of high-throughput sequencing in the early stage of our research group. In the current study, a series of in vitro and in vivo experiments were carried out. MiR-1307-5p mimic, miR-1307-5p inhibitor, and NC were transfected into A549 and H1299 lung adenocarcinoma cells. The correlation between miR-1307-5p and clinicopathological features in pathological samples was analyzed using a lung adenocarcinoma tissue microarray, and miR-1307-5p expression was detected by qPCR. CCK-8, EdU, colony formation, scratch test, and Transwell assays were used to observe cell proliferation and migration. Double luciferase assay, western blot, qPCR, and immunohistochemistry were employed in confirming the target relationship between miR-1307-5p and TRAF3. Western blotting was used to analyze the relationship between miR-1307-5p and the NF-κB/MAPK pathway. Finally, the effect of miR-1307-5p on tumor growth was studied using a subcutaneous tumorigenesis model in nude mice. RESULTS: Increased miR-1307-5p expression was significantly related to decreased overall survival rate of lung adenocarcinoma patients, revealing miR-1307-5p as a potential oncogene in lung adenocarcinoma. MiR-1307-5p mimic significantly promoted while miR-1307-5p inhibitor reduced the growth and proliferation of A549 and H1299 cells. MiR-1307-5p overexpression significantly enhanced the migration ability while miR-1307-5p inhibition reduced the migration ability of A549 and H1299 cells. Target binding of miR-1307-5p to TRAF3 was confirmed by double luciferase assay, western blot, qPCR, and immunohistochemistry. miR-1307-5p caused degradation of TRAF3 mRNA and protein. MiR-1307-5p targeted TRAF3 and activated the NF-κB/MAPK pathway. TRAF3 colocalized with p65 and the localization of TRAF3 and p65 changed in each treatment group. Tumor volume of the lv-miR-1307-5p group was significantly larger than that of the lv-NC group, and that of the lv-miR-1307-5p-inhibitor group was significantly smaller than that of the lv-NC group. CONCLUSION: In conclusion, miR-1307-5p targets TRAF3 and activates the NF-κB/MAPK pathway to promote proliferation in lung adenocarcinoma.

15.
J Asian Nat Prod Res ; 22(2): 167-178, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30507305

RESUMO

In this study, we developed a novel liquid fermentation medium of Cordyceps militaris using pupa powder and wheat bran as nitrogen resources instead of the traditionally used peptone. This process not only reduced the cost by approximately 50%, but increased production by over 30%. Then, we explored a method to extract and purify cordycepin by combining hydrothermal reflux extraction with macroporous resin adsorption, which is inexpensive and suitable for the industrial production. The optimum conditions for hydrothermal reflux were extracting three times at 95 °C with 1:10 sample-to-water ratio, and the cordycepin purity with macroporous resin HPD-100 reached 95.23%.[Formula: see text].


Assuntos
Cordyceps , Desoxiadenosinas , Fermentação , Estrutura Molecular
16.
Environ Microbiol ; 21(12): 4504-4520, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31301270

RESUMO

The HprK serine kinase is a component of the phosphoenolpyruvate phosphotransferase system (PTS) of bacteria that generally regulates catabolite repression through phosphorylation/dephosphorylation of the PTS protein PtsH at a conserved serine residue. However, many bacteria do not encode a complete PTS or even have an HprK homologue. Xanthomonas campestris pv. campestris (Xcc) is a pathogen that cause black rot disease in crucifer plants and one of the few Gram-negative bacteria that encodes a homologue of HprK protein (herein HprKXcc ). To gain insight into the role of HprKXcc and other PTS-related components in Xcc we individually mutated and phenotypically assessed the resulting strains. Deletion of hprK Xcc demonstrated its requirement for virulence and other diverse cellular processes associated including extracellular enzyme activity, extracellular-polysaccharide production and cell motility. Global transcriptome analyses revealed the HprKXcc had a broad regulatory role in Xcc. Additionally, through overexpression, double gene deletion and transcriptome analysis we demonstrated that hprK Xcc shares an epistatic relationship with ptsH. Furthermore, we demonstrate that HprKXcc is a functional serine kinase, which has the ability to phosphorylate PtsH. Taken together, the data illustrates the previously unappreciated global regulatory role of HprKXcc and previously uncharacterized PTS components that control virulence in this pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Xanthomonas campestris/enzimologia , Xanthomonas campestris/patogenicidade , Proteínas Serina-Treonina Quinases/genética , Virulência/genética
17.
Appl Microbiol Biotechnol ; 103(5): 2217-2228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623204

RESUMO

Antimicrobial peptides (AMPs) have generated growing attention because of the increasing bacterial resistance. However, the discovery and identification of AMPs have proven to be challenging due to the complex purification procedure associated with conventional methods. For the reasons given above, it is necessary to explore more efficient ways to obtain AMPs. We established a new method for discovery and identification of novel AMPs by proteomics and bioinformatics from Zanthoxylum bungeanum Maxim seeds protein hydrolysate directly. This process was initially achieved by employing ultra-performance liquid chromatography-electrospray ionization-mass spectrometry/mass (UPLC-ESI-MS/MS) spectrometry to identify peptides derived from Z. bungeanum Maxim seed protein hydrolysates. Three online servers were introduced to predict potential AMPs. Sixteen potential AMPs ranging from 1.5 to 2.7 kDa were predicted and chemically synthesized, one of which, designated NP-6, inhibited activity against all the tested strains according to antimicrobial assay. Time-killing assay indicated that NP-6 could quickly kill almost all the Escherichia coli within 180 min and Staphylococcus aureus at 360 min. Moreover, the simulation 3D structure of NP-6 was consisted of α-helix and random coil, and this was verified by circular dichroism (CD) spectra. At last, the scanning electron microscope (SEM) images of E. coli and S. aureus treated by NP-6 demonstrated that NP-6 had a significant effect on bacteria cell morphology. Our findings provide an efficient approach for discovery of AMPs, and Z. bungeanum Maxim seeds may be a nature resource to extract antimicrobial agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Sementes/química , Staphylococcus aureus/efeitos dos fármacos , Zanthoxylum/química , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Testes de Sensibilidade Microbiana , Hidrolisados de Proteína/análise , Hidrolisados de Proteína/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
18.
Appl Microbiol Biotechnol ; 103(16): 6593-6604, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31286166

RESUMO

A novel antimicrobial peptide named NP-6 was identified in our previous work. Here, the mechanisms of the peptide against Escherichia coli (E. coli) were further investigated, as well as the peptide's resistance to temperature, pH, salinity, and enzymes. The transmission electron microscopy (TEM), confocal laser scanning microcopy (CLSM), and flow cytometric (FCM) analysis, combined with measurement of released K+, were performed to evaluate the effect of NP-6 E. coli cell membrane. The influence of NP-6 on bacterial DNA/RNA and enzyme was also investigated. The leakage of K+ demonstrated that NP-6 could increase the permeability of E. coli cell membrane. The ATP leakage, FCM, and CLSM assays suggested that NP-6 caused the disintegration of bacterial cell membrane. The TEM observation indicated that NP-6 could cause the formation of empty cells and debris. Besides, the DNA-binding assay indicated that NP-6 could bind with bacterial genomic DNA in a way that ethidium bromide (EB) did, and suppress the migration of DNA/RNA in gel retardation. Additionally, NP-6 could also affect the activity of ß-galactosidase. Finally, the effect of different surroundings such as heating, pH, ions, and protease on the antimicrobial activity of NP-6 against E. coli was also investigated. Results showed that the peptide was heat stable in the range of 60~100 °C and performed well at pH 6.0~8.0. However, the antimicrobial activity of NP-6 decreased significantly in the presence of Mg2+/Ca2+, and after incubation with trypsin/proteinase K. The results will provide a theoretical support in the further application of NP-6.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Membrana Celular/ultraestrutura , DNA Bacteriano/metabolismo , Estabilidade de Medicamentos , Escherichia coli/ultraestrutura , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Ligação Proteica , Salinidade , Sementes/química , Temperatura , Zanthoxylum/química , beta-Galactosidase/antagonistas & inibidores
19.
Opt Lett ; 43(22): 5681-5684, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439927

RESUMO

We report on the laser pulse output of 339 J centered at 800 nm from a chirped-pulse amplification (CPA) Ti:sapphire laser system at the Shanghai Superintense Ultrafast Laser Facility. The experimental results demonstrated that the parasitic lasing as well as the transverse amplified spontaneous emission of the homemade 235-mm-diameter Ti:sapphire final amplifier were suppressed successfully via the temporal dual-pulse pumped scheme and the index-matching liquid cladding technique. The maximum pump-to-signal conversion efficiency of 32.1% was measured for the final amplifier. With a compressor transmission efficiency of 64% and a compressed pulse duration of 21 fs obtained for the sample light at a lower energy level, this laser system could potentially generate a compressed laser pulse with a peak power of 10.3 PW. The experimental results represent significant progress with respect to the CPA laser.

20.
Mikrochim Acta ; 185(10): 457, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218159

RESUMO

A catalytic cleavage strategy was developed for the fluorometric determination of Hg(II). The method is based on the use of a Mg(II)-dependent split DNAzyme. Fluorophore labeled hairpins were conjugated to gold nanoparticles (AuNPs) upon which fluorescence is quenched. Thymine-Hg(II)-thymine (T-Hg(II)-T) interaction causes the two DNA sequences to form an entire enzyme-strand DNA (E-DNA). The E-DNA bind to the hairpins on the AuNPs to form a Mg(II)-dependent DNAzyme structure. The circular cleavage of hairpins results in a signal amplification and in the recovery of fluorescence. The assay has a limit of detection (LOD) as low as 80 pM of Hg(II). This LOD is comparable to those obtained with other amplification strategies. The method was successfully applied to the determination of Hg(II) in Chinese herbs (Atractylodes macrocephala Koidz). Graphical abstract Schematic of a catalytic cleavage strategy based on Mg(II)-dependent split DNAzyme for fluorometric determination of Hg(II).


Assuntos
Biocatálise , Técnicas Biossensoriais/métodos , DNA Catalítico/metabolismo , Ouro/química , Sequências Repetidas Invertidas , Mercúrio/análise , Nanopartículas Metálicas/química , Atractylodes/química , DNA Catalítico/química , DNA Catalítico/genética , Fluorometria , Limite de Detecção , Mercúrio/química , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa