RESUMO
(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.
RESUMO
BACKGROUND: Curcumin is widely known for its antioxidant and anti-inflammatory properties, but its mechanism of action in mitigating oxidative stress injury in brain vascular endothelial cells remains unclear. Due to the poor bioavailability of curcumin, it is challenging to achieve effective concentrations at the target sites. Nano-micelles are known for their ability to improve the solubility, stability, and bioavailability of hydrophobic compounds like curcumin. This study investigated the effects and mechanisms of free curcumin and curcumin embedded in nano-micelles (M(Cur)) on oxidative stress-induced injury in bEnd.3 cells. RESULTS: At a protective concentration of 10 µg mL-1, micellar curcumin was better able to recover the morphology of bEnd.3 cells under oxidative stress while increasing cell viability, restoring mitochondrial membrane electrical potential, and effectively inhibiting reactive oxygen species generation with a positive cell rate of 2.21%. These results indicate that curcumin significantly improves H2O2-induced oxidative stress damage in endothelial cells by maintaining the cellular antioxidant balance. CONCLUSION: This study adds to knowledge regarding the role of nano-micelles in curcumin intervention for endothelial cell oxidative damage and provides insights for the development of curcumin-based dietary supplements. © 2024 Society of Chemical Industry.
RESUMO
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Assuntos
Encapsulamento de Células , Probióticos , Humanos , Trato Gastrointestinal , BiofilmesRESUMO
Acute coronary syndrome (ACS) is the most severe form of ischemic heart disease. Although it is caused by atherosclerotic plaque thrombosis or nonatherosclerotic causes, its pathophysiological mechanism of ACS is not fully understood, and its concept is constantly updated and developed. At present, the main pathophysiological mechanisms include plaque rupture, plaque erosion, calcified nodules (CN) and non-atherosclerotic causes such as coronary vasospasm and myocardial bridging (MB). These mechanisms may overlap and coexist in some ACS patients. Therefore, the pathophysiological mechanism of ACS is complex, and is of great significance for the diagnosis and treatment of ACS. This review will discuss the pathophysiological mechanisms of ACS to provide new thoughts on the pathogenesis, diagnosis and treatment of ACS.
RESUMO
Background: Coronary biomechanical stress contributes to the plaque rupture and subsequent events. This study aimed to investigate the impact of plaque biomechanical stability on the physiological progression of intermediate lesions, as assessed by the radial wall strain (RWS) derived from coronary angiography. Methods: Patients with at least one medically treated intermediate lesion at baseline who underwent follow-up coronary angiography over 6 months were included. The maximal RWS ( RWS max ) of the interrogated lesion was calculated from the baseline angiogram. The primary endpoint was to determine the association between baseline RWS max and the functional progression of coronary lesions, defined as an increase in the lesion-specific â³ quantitative flow ratio (L- â³ QFR, calculated as the absolute change in QFR across the lesion) on serial angiograms. Results: Among 175 lesions in 156 patients, 63 lesions showed an increase in L- â³ QFR during a median follow-up period of 12.4 months. Baseline RWS max values were significantly higher in lesions with increased L- â³ QFR than in those with stabilized or decreased L- â³ QFR (11.8 [10.7, 13.7] vs.10.8 [9.7, 11.7]; p = 0.001). Baseline RWS max presented an area under the curve of 0.658 (95% confidence interval [CI]: 0.572-0.743, p < 0.001) for the prediction of increased L- â³ QFR. After full adjustment for clinical and angiographic factors, a high RWS max ( > 12) was found to be an independent predictor of functional lesion progression (odds ratio: 2.871, 95% CI: 1.343-6.138, p = 0.007). Conclusions: A high RWS max calculated from baseline angiograms was independently associated with the subsequent physiological progression in patients with intermediate coronary lesions.
RESUMO
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Assuntos
Tecnologia de Alimentos , Carne , Humanos , Carne/análise , Embalagem de Alimentos , Agricultura , Estado NutricionalRESUMO
Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Espécies Reativas de Oxigênio , Mitocôndrias , Infarto do Miocárdio/genética , MicroRNAs/genéticaRESUMO
The prevalence of type 2 diabetes has been growing at an increasing rate worldwide. Dietary therapy is probably the easiest and least expensive method to prevent and treat diabetes. Previous studies have reported that coarse grains have anti-diabetic effects. Although considerable efforts have been made on the anti-diabetic function of different grains, the mechanisms of coarse grains on type 2 diabetes have not been systematically compared and summarized so far. Intestinal flora, reported as the main 'organ' of action underlying coarse grains, is an important factor in the alleviation of type 2 diabetes by coarse grains. Furthermore, microRNA (miRNA), as a new disease marker and 'dark nutrient', plays a likely influential role in cross-border communication among coarse grains, intestinal flora, and hosts. Given this context, this article reviews several possible mechanisms for the role of coarse grains on diabetes, incorporating resistance to inflammation and oxidative stress, repair of insulin signaling and ß-cell dysfunction, and highlights the regulation of intestinal flora disorders and miRNAs expression, along with some novel insights. © 2022 Society of Chemical Industry.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevenção & controle , MicroRNAs/genética , Insulina , DietaRESUMO
The relationship between cardiac and renal function is complicated. The impact of percutaneous coronary intervention (PCI) on renal function in patients with coronary artery disease is still unclear. The current study sought to assess renal function change, including the time course of renal function, after elective PCI in patients with improved renal function and to identify renal function predictors of major adverse cardiovascular events. We examined data from 1572 CHD patients who had coronary angiography (CAG) or PCI in this retrospective cohort study. Patients receiving elective PCI (n=1240) and CAG (n=332) between January 2013 and December 2018 were included. Pre-PCI and procedural variables associated with post-PCI eGFR, change in renal function after post-PCI follow-up, and post-PCI eGFR association with major adverse cardiovascular events were investigated. Following the procedure, 88.7 percent of PCI group patients had unchanged or improved renal function. The treatment of PCI was found to independently correlate with IRF following coronary angiography in an analysis of patients undergoing PCI [OR 4.561 (95% CI:2 .556-8.139); p<0.001]. The area under the receiver operating characteristic (ROC) curve is 0.763 (model with the treatment of PCI). Improved renal function (IRF) and stable renal function were both associated with a lower risk of a major cardiovascular event.
RESUMO
BACKGROUND: Compared with visual angiographic assessment, pressure wire-based physiological measurement more accurately identifies flow-limiting lesions in patients with coronary artery disease. Nonetheless, angiography remains the most widely used method to guide percutaneous coronary intervention (PCI). In FAVOR III China, we aimed to establish whether clinical outcomes might be improved by lesion selection for PCI using the quantitative flow ratio (QFR), a novel angiography-based approach to estimate the fractional flow reserve. METHODS: FAVOR III China is a multicentre, blinded, randomised, sham-controlled trial done at 26 hospitals in China. Patients aged 18 years or older, with stable or unstable angina pectoris or patients who had a myocardial infarction at least 72 h before screening, who had at least one lesion with a diameter stenosis of 50-90% in a coronary artery with a reference vessel of at least 2·5 mm diameter by visual assessment were eligible. Patients were randomly assigned to a QFR-guided strategy (PCI performed only if QFR ≤0·80) or an angiography-guided strategy (PCI based on standard visual angiographic assessment). Participants and clinical assessors were masked to treatment allocation. The primary endpoint was the 1-year rate of major adverse cardiac events, a composite of death from any cause, myocardial infarction, or ischaemia-driven revascularisation. The primary analysis was done in the intention-to-treat population. The trial was registered with ClinicalTrials.gov (NCT03656848). FINDINGS: Between Dec 25, 2018, and Jan 19, 2020, 3847 patients were enrolled. After exclusion of 22 patients who elected not to undergo PCI or who were withdrawn by their physicians, 3825 participants were included in the intention-to-treat population (1913 in the QFR-guided group and 1912 in the angiography-guided group). The mean age was 62·7 years (SD 10·1), 2699 (70·6%) were men and 1126 (29·4%) were women, 1295 (33·9%) had diabetes, and 2428 (63·5%) presented with an acute coronary syndrome. The 1-year primary endpoint occurred in 110 (Kaplan-Meier estimated rate 5·8%) participants in the QFR-guided group and in 167 (8·8%) participants in the angiography-guided group (difference, -3·0% [95% CI -4·7 to -1·4]; hazard ratio 0·65 [95% CI 0·51 to 0·83]; p=0·0004), driven by fewer myocardial infarctions and ischaemia-driven revascularisations in the QFR-guided group than in the angiography-guided group. INTERPRETATION: In FAVOR III China, among patients undergoing PCI, a QFR-guided strategy of lesion selection improved 1-year clinical outcomes compared with standard angiography guidance. FUNDING: Beijing Municipal Science and Technology Commission, Chinese Academy of Medical Sciences, and the National Clinical Research Centre for Cardiovascular Diseases, Fuwai Hospital.
Assuntos
Angiografia Coronária , Doença da Artéria Coronariana/cirurgia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Intervenção Coronária Percutânea , China , Vasos Coronários/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
RESUMO
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Assuntos
Anti-Infecciosos , Filmes Comestíveis , Antioxidantes , Embalagem de Alimentos , Conservação de AlimentosRESUMO
BACKGROUND AND AIMS: High glucose and its byproducts are important factors causing dysfunction of endothelial cells. Autophagy is critical for endothelial cellular homeostasis. However, the specific molecular mechanism of how autophagy is regulated in endothelial cells under high-glucose condition remains unknown. We aim to explore the role Sirt6 plays in regulating autophagy in AGE-treated endothelial cells and how this function is exerted via KLF4. METHODS AND RESULTS: Our results indicate that autophagy level increased in AGE-treated endothelial cells alongside with higher Sirt6 and KLF4 expression level. What's more, knock-in of Sirt6 by adenovirus led to augmented autophagy level while knockdown of Sirt6 led to the opposite. We also verified that Sirt6 affected KLF4 expression positively but KLF4 didn't influence Sirt6 expression level while knocking out of KLF4 impaired Sirt6-enhanced autophagy. Finally we found that STZ-induced diabetic mice showed more autophagosomes in endothelium and Sirt6 knockdown by adeno-associated virus reduced the number of autophagosomes. Knockdown of Sirt6 also caused impaired endothelium integrity but echocardiography indicated there were no significant functional differences. CONCLUSION: Our research reveals more about how Sirt6 regulates autophagy in endothelial cells under high-glucose simulated condition and provides further insight into the relationships between Sirt6 and KLF4.
Assuntos
Diabetes Mellitus Experimental , Sirtuínas , Animais , Autofagia , Diabetes Mellitus Experimental/genética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Sirtuínas/genética , Sirtuínas/metabolismoRESUMO
BACKGROUND: Lipid-lowering therapy is important, and the distribution of lipid levels and the incidence of hyperlipidemia may vary in different subgroups of the population. We aimed to explore the distribution of lipid levels and the prevalence of hyperlipidemia in subpopulations with subgroup factors, including age, sex, race, and smoking status. METHODS: Our study used data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018, ultimately enrolling and analyzing 15,499 participants. A cross-sectional analysis was performed to assess the distribution of lipids and prevalence of hyperlipidemia in subpopulations, and multifactorial logistic regression analyses were performed for the prevalence of hyperlipidemia, adjusted for age, sex, race and smoking status. RESULTS: Blacks had significantly lower mean serum total cholesterol and triglycerides and higher serum high-density lipoprotein cholesterol (HDL-C) than whites (P < 0.001). In contrast, Mexican Americans had markedly higher mean serum triglycerides and lower serum HDL-C than whites (P < 0.001). Furthermore, the prevalence of hypercholesterolemia and hypertriglyceridemia was lower in blacks than in whites (P = 0.003 and P < 0.001, respectively), while the prevalence of hypertriglyceridemia was significantly higher in Mexican Americans than in whites (P = 0.002). In addition, total cholesterol and triglyceride levels were significantly higher in women aged 65 years or older and markedly higher than in men in the same age group (P < 0.001). In addition, overall mean total cholesterol, triglyceride, and low-density lipoprotein cholesterol (LDL-C) levels were higher in smokers than in nonsmokers (P = 0.01, P < 0.001, and P = 0.005, respectively). CONCLUSION: Based on NHANES data, the mean lipid levels and prevalence of hyperlipidemia differed by sex, age, race, and smoking status.
Assuntos
Hiperlipidemias , Hipertrigliceridemia , Masculino , Feminino , Humanos , Hiperlipidemias/epidemiologia , Inquéritos Nutricionais , Prevalência , Estudos Transversais , HDL-Colesterol , Triglicerídeos , Hipertrigliceridemia/epidemiologiaRESUMO
BACKGROUND: The optimal threshold of hyperglycaemia at admission for identifying high-risk individuals in patients with acute myocardial infarction (AMI) and its impact on clinical prognosis are still unclear. METHODS: We retrospectively reviewed 2027 patients with AMI admitted from June 2001 to December 2012 in the 'Medical Information Mart for Intensive Care III' database. The significant cut-off values of admission blood glucose (Glucose_0) for predicting hospital mortality in patients with AMI with and without diabetes were obtained from the receiver operating characteristic (ROC) curve, then patients were assigned to hyperglycaemia and non-hyperglycaemia groups based on corresponding cut-off values. The primary endpoints were the hospital and 1-year mortality. RESULTS: Among 2027 patients, death occurred in 311 patients (15.3%). According to the ROC curve, the significant cut-off values of Glucose_0 to predict hospital mortality were 224.5 and 139.5 mg/dL in patients with diabetes and without diabetes, respectively. The crude hospital and 1-year mortality of the hyperglycaemia subgroup were higher than the corresponding non-hyperglycaemia group (p< 0.01). After adjustment, regardless of the state of diabetes, hyperglycaemia at admission was related to significantly increased hospital mortality in patients with AMI. For patients with AMI without diabetes, hyperglycaemia at admission was positively correlated with the increase of 1-year mortality (HR, 1.47; 95% CI 1.18 to 1.82; p=0.001). Nevertheless, this trend disappeared in those with diabetes (HR, 1.35; 95% CI 0.93 to 1.95; p=0.113). CONCLUSION: Hyperglycaemia at admission was an independent predictor for mortality during hospitalisation and at 1-year in patients with AMI, especially in patients without diabetes.
RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during AD development, which could target nutritional intervention. The prebiotic mannan oligosaccharide (MOS) has been reported to reshape the gut microbiome and enhanced the formation of the neuroprotective metabolites short-chain fatty acids (SCFAs). Here, we found that an 8-week treatment of MOS (0.12%, w/v in the drinking water) significantly improved cognitive function and spatial memory, accompanied by attenuated the anxiety- and obsessive-like behaviors in the 5xFAD transgenic AD mice model. MOS substantially reduced the Aß accumulation in the cortex, hippocampus, and amygdala of the brain. Importantly, MOS treatment significantly balanced the brain redox status and suppressed the neuroinflammatory responses. Moreover, MOS also alleviated the HPA-axis disorders by decreasing the levels of hormones corticosterone (CORT) and corticotropin-releasing hormone (CRH) and upregulated the norepinephrine (NE) expressions. Notably, the gut barrier integrity damage and the LPS leak were prevented by the MOS treatment. MOS re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter. MOS enhanced the butyrate formation and related microbes levels. The correlation analysis indicated that the reshaped gut microbiome and enhanced butyrate formation are highly associated with behavioral alteration and brain oxidative status. SCFAs supplementation experiment also attenuated the behavioral disorders and Aß accumulation in the AD mice brain, accompanied by balanced HPA-axis and redox status. In conclusion, the present study indicated that MOS significantly attenuates the cognitive and mental deficits in the 5xFAD mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. MOS, as a prebiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Encéfalo , Cognição , Mananas , Camundongos , Camundongos Transgênicos , OligossacarídeosRESUMO
INTRODUCTION: The prognosis of new-onset atrial fibrillation (AF) compared with that of preexisting and non-AF remains controversial. The purpose of this study was to evaluate the effect of new-onset AF compared with preexisting and non-AF on hospital and 90-day mortality. METHODS: A retrospective cohort study was performed using data obtained from the Medical Information Mart for Intensive Care III database. The primary outcome was 90-day mortality. Secondary outcomes included hospital mortality, hospital and intensive care unit (ICU) length of stay, and acute kidney injury. Logistic and Cox regression analyses were performed to evaluate the relationship between new-onset AF and study outcomes. RESULTS: A total of 38,159 adult patients were included in the study. The incidence of new-onset AF was 9.4%. Ninety-day mortality, hospital mortality, and hospital and ICU length of stay in patients with new-onset and preexisting AF were significantly increased compared with those in patients with non-AF patients (all p < 0.001). After adjusting for patient characteristics, new-onset AF remained associated with increased 90-day mortality compared with non-AF (adjusted hazard ratio (HR) 1.37, 95% confidence interval (CI) 1.26 to 1.50; p < 0.01) and preexisting AF (adjusted HR 1.12; 95%-CI 1.02 to 1.23; p < 0.01). Patients in the surgical intensive care unit (SICU) had significantly higher 90-day mortality than patients in the coronary care unit (adjusted HR 1.30; 95% CI 1.31 to 1.51; p < 0.001). CONCLUSIONS: Critically ill patients with new-onset AF have significantly increased hospital and 90-day mortality compared with patients with preexisting and non-AF. Patients with new-onset AF in the ICU, especially those in the SICU, require robust management measures.
Assuntos
Fibrilação Atrial/terapia , Estado Terminal/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/mortalidade , China/epidemiologia , Estado Terminal/mortalidade , Bases de Dados Factuais , Feminino , Mortalidade Hospitalar , Humanos , Incidência , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de TempoRESUMO
ABSTRACT: As beverage industry by product, kiwi fruit pomace is potential but underutilized. In this study, insoluble dietary fiber from kiwi fruit pomace was modified via ultra-fine pulverization. The physicochemical and functional properties of kiwi fruit insoluble dietary fiber (KWIDF) superfine powder and its application in pork meatballs as a fat substitute were investigated. The SEM and droplet size measurement results revealed that the specific surface area of KWIDF increased from 44.4 to 192.9 m2 kg-1. The swelling capacity, water-, oil- and fat-holding capacities increased by 51.61%, 40.21%, 46.09% and 47.01%, respectively. The poisonous substances adsorbing abilities and the inhibition of enzyme activities were also improved. Similarly, KWIDF adsorbed cholesterol and glucose preferably. In addition, KWIDF revealed significant dose-response effects on the nutritional within a meat matrix, quality and sensory characteristics in meatballs (P < 0.05). The addition of 3% KWIDF superfine powder was found most suitable with high acceptability overall.
RESUMO
When consumed at sufficiently high levels, polyphenols may provide health benefits, which is linked to their antidiabetic, antiinflamatory, antimicrobial, antioxidant, antitumor, and hypolipidemic properties. Moreover, certain polyphenol combinations exhibit synergistic effects when delivered together - the combined polyphenols have a higher biological activity than the sum of the individual ones. However, the commercial application of polyphenols as nutraceuticals is currently limited because of their poor solubility characteristics; instability when exposed to light, heat, and alkaline conditions; and, low and inconsistent oral bioavailability. Colloidal delivery systems are being developed to overcome these challenges. In this article, we review the design, fabrication, and utilization of food-grade biopolymer-based delivery systems for the encapsulation of one or more polyphenols. In particular, we focus on the creation of delivery systems constructed from edible proteins and polysaccharides. The optimization of biopolymer-based delivery systems may lead to the development of innovative polyphenol-enriched functional foods that can improve human health and wellbeing.