Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38598308

RESUMO

OBJECTIVE: To observe and analyze the efficacy of recombinant tissue-plasminogen activator (rt-PA) thrombolysis combined with Solitaire AB stent mechanical thrombectomy in patients with acute ischemic stroke. METHODS: Clinical efficacy, neurological function, oxidative stress response, adverse reactions, and quality of life were compared between the two groups. RESULTS: Lower NIHSS scores were observed among patients who received treatment within 2 h after stroke onset when compared with those in a timeframe of 2-6 h, suggesting better neurological function recovery of the patients with early intervention and thus emphasizing the importance of early treatment for patients with stroke onset. Clinical efficacy in the combination group was significantly higher than in the control group (p < 0.05). After treatment, Paraoxonase-1 (PON-1) levels were higher, while lipoprotein-associated phospholipase A2 (Lp-PLA2) and Serum Amyloid A (SAA) levels were lower in the combination group compared to the control group (p < 0.05). The incidence of adverse reactions was significantly lower in the combination group (p < 0.05). At discharge, we observed significantly more patients with good recovery in the combination group when compared to the control group (p < 0.05), suggesting better quality of life of the patients, while this statistical significance was no longer observable at 90 days after discharge (p > 0.05). CONCLUSION: For acute ischemic stroke patients, rt-PA thrombolysis combined with Solitaire AB stent mechanical thrombectomy treatment is effective. It promotes neurological function recovery, improves vascular stenosis, reduces inflammation and adverse reactions, and enhances quality of life, showing promising clinical applications.

2.
Int Wound J ; 21(1): e14392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37722871

RESUMO

The meta-analysis aimed to assess and compare the effect of closed-incision negative pressure wound (NPW) treatment in vascular surgery. Using dichotomous or contentious random or fixed effect models, the outcomes of this meta-analysis were examined, and the odds Ratio (OR) and the mean difference (MD) with 95% confidence intervals (CIs) were computed. Ten examinations from 2017 to 2022 were enrolled for the present meta-analysis, including 2082 personals with vascular surgery. Closed-incision NPW treatment had significantly lower infection rates (OR, 0.39; 95% CI, 0.30-0.51, p < 0.001), grade I infection rates (OR, 0.33; 95% CI, 0.20-0.52, p < 0.001), grade II infection rates (OR, 0.39; 95% CI, 0.21-0.71, p = 0.002), and grade III infection rates (OR, 0.31; 95% CI, 0.13-0.73, p = 0.007), and surgical re-intervention (OR, 0.49; 95% CI, 0.25-0.97, p = 0.04) compared to control in personal with vascular surgery. However, no significant differences were found between closed-incision NPW treatment and control in the 30-day mortality (OR, 0.54; 95% CI, 0.29-1.00, p = 0.05), antibiotic treatment (OR, 0.53; 95% CI, 0.24-1.19, p = 0.12), and length of hospital stay (MD, -0.02; 95% CI, -0.24-0.19, p = 0.83) in personnel with vascular surgery. The examined data revealed that closed-incision NPW treatment had significantly lower infection rates, grade I infection rates, grade II infection rates, and grade III infection rates, surgical re-intervention, however, there were no significant differences in 30-day mortality, antibiotic treatment, or length of hospital stay compared to control group with vascular surgery. Yet, attention should be paid to its values since some comparisons had a low number of selected studies.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/terapia , Ferida Cirúrgica/terapia , Procedimentos Cirúrgicos Vasculares , Antibacterianos
3.
Angew Chem Int Ed Engl ; : e202409152, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923635

RESUMO

Na+/vacancy ordering in sodium-ion layered oxide cathodes is widely believed to deteriorate the structural stability and retard the Na+ diffusion kinetics, but its unexplored potential advantages remain elusive. Herein, we prepared a P2-Na0.8Cu0.22Li0.08Mn0.67O2 (NCLMO-12h) material featuring moderate Na+/vacancy and transition-metal (TM) honeycomb orderings. The appropriate Na+/vacancy ordering significantly enhances the operating voltage and the TM honeycomb ordering effectively strengthens the layered framework. Compared with the disordered material, the well-balanced dual-ordering NCLMO-12h cathode affords a boosted working voltage from 2.85 to 3.51 V, a remarkable ~20% enhancement in energy density, and a superior cycling stability (capacity retention of 86.5% after 500 cycles). The solid-solution reaction with a nearly "zero-strain" character, the charge compensation mechanisms, and the reversible inter-layer Li migration upon sodiation/desodiation are unraveled by systematic in-situ/ex-situ characterizations. This study breaks the stereotype surrounding Na+/vacancy ordering and provides a new avenue for developing high-energy and long-durability sodium layered oxide cathodes.

4.
Angew Chem Int Ed Engl ; 63(11): e202320075, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38230459

RESUMO

The utilization rate of active sites in cathode materials for Zn-based batteries is a key factor determining the reversible capacities. However, a long-neglected issue of the strong electrostatic repulsions among divalent Zn2+ in hosts inevitably causes the squander of some active sites (i.e., gap sites). Herein, we address this conundrum by unraveling the "gap-filling" mechanism of multiple charge carriers in aqueous Zn-MoS2 batteries. The tailored MoS2 /(reduced graphene quantum dots) hybrid features an ultra-large interlayer spacing (2.34 nm), superior electrical conductivity/hydrophilicity, and robust layered structure, demonstrating highly reversible NH4 + /Zn2+ /H+ co-insertion/extraction chemistry in the 1 M ZnSO4 +0.5 M (NH4 )2 SO4 aqueous electrolyte. The NH4 + and H+ ions can act as gap fillers to fully utilize the active sites and screen electrostatic interactions to accelerate the Zn2+ diffusion. Thus, unprecedentedly high rate capability (439.5 and 104.3 mAh g-1 at 0.1 and 30 A g-1 , respectively) and ultra-long cycling life (8000 cycles) are achieved.

5.
Angew Chem Int Ed Engl ; : e202405839, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801294

RESUMO

Triggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen-oxygen bond. High-valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre-catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn-Teller (J-T) distortion induced structural instability, we incorporate high-spin Mn3+ ( t 2 g 3 e g 1 ${{t}_{2g}^{3}{e}_{g}^{1}}$ ) dopant into Co4N. Mn dopants enable a surface structural transformation from Co4N to CoOOH, and finally to CoO2, as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn-doped Co4N triggers the lattice oxygen activation, as evidenced experimentally by pH-dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18O-labelled catalysts. In general, this work not only offers the introducing J-T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.

6.
Circulation ; 146(1): 6-17, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35656816

RESUMO

BACKGROUND: The authors compare the effectiveness and safety of endovascular treatment (EVT) versus best medical management (BMM) in strokes attributable to acute basilar artery occlusion (BAO). METHODS: The present analysis was based on the ongoing, prospective, multicenter ATTENTION (Endovascular Treatment for Acute Basilar Artery Occlusion) trial registry in China. Our analytic sample comprised 2134 patients recruited at 48 sites between 2017 and 2021 and included 462 patients who received BMM and 1672 patients who received EVT. We performed an inversed probability of treatment weighting analysis. Qualifying patients had to present within 24 hours of estimated BAO. The primary clinical outcome was favorable functional outcome (modified Rankin Scale score, 0-3) at 90 days. We also performed a sensitivity analysis with the propensity score matching-based and the instrumental variable-based analysis. RESULTS: In our primary analysis using the inversed probability of treatment weighting-based analysis, there was a significantly higher rate of favorable outcome at 90 days among EVT patients compared with BMM-treated patients (adjusted relative risk, 1.42 [95% CI, 1.19-1.65]; absolute risk difference, 11.8% [95% CI, 6.9-16.7]). The mortality was significantly lower (adjusted relative risk, 0.78 [95% CI, 0.69-0.88]; absolute risk difference, -10.3% [95% CI, -15.8 to -4.9]) in patients undergoing EVT. Results were generally consistent across the secondary end points. Similar associations were seen in the propensity score matching-based and instrumental variable-based analysis. CONCLUSIONS: In this real-world study, EVT was associated with significantly better functional outcomes and survival at 90 days. Well-designed randomized studies comparing EVT with BMM in the acute BAO are needed. REGISTRATION: URL: www.chictr.org.cn; Unique identifier: ChiCTR2000041117.


Assuntos
Arteriopatias Oclusivas , Procedimentos Endovasculares , Acidente Vascular Cerebral , Arteriopatias Oclusivas/terapia , Artéria Basilar , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Humanos , Estudos Prospectivos , Sistema de Registros , Trombectomia/métodos , Resultado do Tratamento
7.
J Am Chem Soc ; 145(41): 22708-22719, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813829

RESUMO

Activating anionic redox chemistry in layered oxide cathodes is a paradigmatic approach to devise high-energy sodium-ion batteries. Unfortunately, excessive oxygen redox usually induces irreversible lattice oxygen loss and cation migration, resulting in rapid capacity and voltage fading and sluggish reaction kinetics. Herein, the reductive coupling mechanism (RCM) of uncommon electron transfer from oxygen to copper ions is unraveled in a novel P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode for boosting the reversibility and kinetics of anionic redox reactions. The resultant strong covalent Cu-(O-O) bonding can efficaciously suppress excessive oxygen oxidation and irreversible cation migration. Consequently, the P2-Na0.8Cu0.22Li0.08Mn0.67O2 cathode delivers a marvelous rate capability (134.1 and 63.2 mAh g-1 at 0.1C and 100C, respectively) and outstanding long-term cycling stability (82% capacity retention after 500 cycles at 10C). The intrinsic functioning mechanisms of RCM are fully understood through systematic in situ/ex situ characterizations and theoretical computations. This study opens a new avenue toward enhancing the stability and dynamics of oxygen redox chemistry.

8.
J Am Chem Soc ; 145(14): 7829-7836, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010254

RESUMO

Acidic water electrolysis enables the production of hydrogen for use as a chemical and as a fuel. The acidic environment hinders water electrolysis on non-noble catalysts, a result of the sluggish kinetics associated with the adsorbate evolution mechanism, reliant as it is on four concerted proton-electron transfer steps. Enabling a faster mechanism with non-noble catalysts will help to further advance acidic water electrolysis. Here, we report evidence that doping Ba cations into a Co3O4 framework to form Co3-xBaxO4 promotes the oxide path mechanism and simultaneously improves activity in acidic electrolytes. Co3-xBaxO4 catalysts reported herein exhibit an overpotential of 278 mV at 10 mA/cm2 in 0.5 M H2SO4 electrolyte and are stable over 110 h of continuous water oxidation operation. We find that the incorporation of Ba cations shortens the Co-Co distance and promotes OH adsorption, findings we link to improved water oxidation in acidic electrolyte.

9.
Small ; 19(4): e2205789, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36420673

RESUMO

As one of the most promising cathode materials in sodium-ion batteries, manganese-based layered oxides have aroused wide attention due to their high specific capacity and plentiful reserves. However, they are plagued by poor air stability rooting in water/Na+ exchange and adverse structural reconstruction, hindering their practical applications. Herein, it is demonstrated that utilizing fluorine to substitute oxygen atoms can narrow the interlayer spacing of novel P'2-Na0.67 MnO1.97 F0.03 (NMOF) cathode material, which resists the attack of water molecules, significantly prolonging exposure time in air. Density functional theory (DFT) calculation results indicate that fluorine substitution alleviates the insertion of water molecules and spontaneous extraction of Na+ effectively. Benefiting from the structural modulation, NMOF can deliver a high specific capacity of 227.1 mAh g-1 at 20 mA g-1 and a promising capacity retention of 84.0% after 100 cycles at 200 mA g-1 . This facile and available strategy provides a feasible way to strengthen the air-stability and expands the scope of practical applications of layered oxide cathodes.

10.
Mol Cell Biochem ; 478(3): 609-620, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35997855

RESUMO

Cerebral ischemia-reperfusion (I/R) injury occurs due to the restoration of blood perfusion after cerebral ischemia, which results in the damage of the brain structures and functions. Unfortunately, currently there are no effective methods for preventing and treating it. The pumilio 2 (PUM2) is a type of RBPs that has been reported to participate in the progression of several diseases. Ferroptosis is reported to be involved in I/R injury. Whether PUM2 modulated I/R injury through regulating ferroptosis remains to be elucidated. The cerebral I/R models including animal middle cerebral artery occlusion/reperfusion (MCAO/R) model and oxygen-glucose deprivation/reperfusion (OGD/R)-induced cortical neuron injury cell model of were established and, respectively. RT-qPCR was applied for evaluating PUM2, SIRT1 and SLC7A11 expression. Western blot was employed for measuring the protein expression levels. The viability of cortical neurons was tested by MTT assay. The histological damage of the brain tissues was assessed by H&E staining. The level of PUM2 was boosted in both the brain tissues of the MCAO model and OGD/R-induced cortical neuron injury model. Silence of PUM2 alleviated MCAO-induced brain injury and decreased the death of PC12 cell exposed to OGD/R. PUM2 also aggravated the accumulation of free iron in MCAO mice and OGD/R-induced cortical neuron injury model. In addition, PUM2 suppressed SLC7A11 via inhibiting expression of SIRT1. Rescue assays unveiled that downregulation of SLC7A11 reversed PUM2 mediated neuroinflammation and brain damage induced by I/R. PUM2 aggravated I/R-induced neuroinflammation and brain damage through the SLC7A11-dependent inhibition of ferroptosis by suppressing SIRT1, highlighting the role of PUM2 in preventing or treating cerebral I/R injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ferroptose , Traumatismo por Reperfusão , Camundongos , Animais , Doenças Neuroinflamatórias , Sirtuína 1/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/metabolismo , Lesões Encefálicas/metabolismo , Reperfusão , Proteínas de Ligação a RNA/metabolismo
11.
Angew Chem Int Ed Engl ; 62(27): e202304444, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129439

RESUMO

The irreversible issues of Zn anode stemming from dendrite growth and water-induced erosion have severely hindered the commercialization of rechargeable aqueous Zn batteries. Herein, a hydrophobic and fast-Zn2+ -conductive zinc hexacyanoferrate (HB-ZnHCF) interphase layer is in situ integrated on Zn by a rapid room-temperature wet-chemistry method to address these dilemmas. Different from currently proposed hydrophilic inorganic cases, the hydrophobic and compact HB-ZnHCF interphase effectively prevents the access of water molecules to Zn surface, thus avoiding H2 evolution and Zn corrosion. Moreover, the HB-ZnHCF with large internal ion channels, strong zincophilicity, and high Zn2+ transference number (0.86) permits fast Zn2+ transport and enables smooth Zn deposition. Remarkably, the resultant HB-ZnHCF@Zn electrode delivers unprecedented reversibility with 99.88 % Coulombic efficiency over 3000 cycles, realizes long-term cycling over 5800 h (>8 months, 1 mA cm-2 ) and 1000 h (10 mA cm-2 ), and assures the stable operation of full Zn battery with both coin- and pouch-type configurations.

12.
Angew Chem Int Ed Engl ; 62(15): e202219230, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780319

RESUMO

Manganese-rich layered oxide cathodes of sodium-ion batteries (SIBs) are extremely promising for large-scale energy storage owing to their high capacities and cost effectiveness, while the Jahn-Teller (J-T) distortion and low operating potential of Mn redox largely hinder their practical applications. Herein, we reveal that annealing in argon rather than conventional air is a universal strategy to comprehensively upgrade the Na-storage performance of Mn-based oxide cathodes. Bulk oxygen vacancies are introduced via this method, leading to reduced Mn valence, lowered Mn 3d-orbital energy level, and formation of the new-concept Mn domains. As a result, the energy density of the model P2-Na0.75 Mg0.25 Mn0.75 O2 cathode increases by ≈50 % benefiting from the improved specific capacity and operating potential of Mn redox. The Mn domains can disrupt the cooperative J-T distortion, greatly promoting the cycling stability. This exciting finding opens a new avenue towards high-performance Mn-based oxide cathodes for SIBs.

13.
J Am Chem Soc ; 144(31): 14005-14011, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904545

RESUMO

The carbon-carbon (C-C) bond formation is essential for the electroconversion of CO2 into high-energy-density C2+ products, and the precise coupling pathways remain controversial. Although recent computational investigations have proposed that the OC-COH coupling pathway is more favorable in specific reaction conditions than the well-known CO dimerization pathway, the experimental evidence is still lacking, partly due to the separated catalyst design and mechanistic/spectroscopic exploration. Here, we employ density functional theory calculations to show that on low-coordinated copper sites, the *CO bindings are strengthened, and the adsorbed *CO coupling with their hydrogenation species, *COH, receives precedence over CO dimerization. Experimentally, we construct a fragmented Cu catalyst with abundant low-coordinated sites, exhibiting a 77.8% Faradaic efficiency for C2+ products at 300 mA cm-2. With a suite of in situ spectroscopic studies, we capture an *OCCOH intermediate on the fragmented Cu surfaces, providing direct evidence to support the OC-COH coupling pathway. The mechanistic insights of this research elucidate how to design materials in favor of OC-COH coupling toward efficient C2+ production from CO2 reduction.

14.
Small ; 18(31): e2202879, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35808956

RESUMO

Na superionic conductor (NASICON)-type Na4 MnCr(PO4 )3 has attracted extensive attention among the phosphate sodium-storage cathodes due to its ultra-high energy density originating from three-electron reactions but it suffers from severe structural degradation upon repeated sodiation/desodiation processes. Herein, Mg is used for partial substitution of Mn in Na4 MnCr(PO4 )3 to alleviate Jahn-Teller distortions and to prolong the cathode cycling life by virtue of the pinning effect induced by implanting inert MgO6 octahedra into the NASICON framework. The as-prepared Na4 Mn0.9 CrMg0.1 (PO4 )3 /C cathode delivers high capacity retention of 92.7% after 500 cycles at 5 C and fascinating rate capability of 154.6 and 70.4 mAh g-1 at 0.1 and 15 C, respectively. Meanwhile, it can provide an admirable energy density of ≈558.48 Wh kg-1 based on ≈2.8-electron reactions of Mn2+ /Mn3+ , Mn3+ /Mn4+ , and Cr3+ /Cr4+ redox couples. In situ X-ray diffraction reveals the highly reversible single-phase and bi-phase structural evolution of such cathode materials with a volume change of only 6.3% during the whole electrochemical reaction. The galvanostatic intermittent titration technique and density functional theory computations jointly demonstrate the superior electrode process kinetics and enhanced electronic conductivity after Mg doping. This work offers a new route to improve the cycling stability of the high-energy NASICON-cathodes for sodium-ion batteries.

15.
Chemistry ; 28(43): e202201101, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639352

RESUMO

Aqueous Zn-ion batteries (AZIBs) are considered as promising large-scale energy storage devices due to their high safety and low cost. Transition metal dichalcogenides (TMDs) as the potential aqueous Zn-storage cathode materials are under the research spotlight because of their facile 2D ion-transport channels and weak electrostatic interactions with Zn2+ . In this concept article, we summarize the intrinsic structural features and aqueous Zn-storage mechanisms of the TMDs-based electrodes. More significantly, the latest design concepts of TMDs materials for high-performance AZIBs are discussed in detail from three aspects of interlayer expansion engineering, phase transition engineering, and structure defects engineering. Finally, the current challenges facing TMDs cathodes and possible remedies are outlined for future developments towards efficient, rapid, and stable aqueous Zn-ion storage.

16.
Chem Rec ; 22(10): e202200086, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790075

RESUMO

An all-solid-state battery enabled by the incombustible and highly Li-ion conductive sulfide solid-state electrolyte, is recognized to be a strong candidate for next-generation of lithium-ion batteries. Intensive research efforts have been devoted to developing the well-suited sulfide electrolytes with outstanding performances. Although several types of sulfide electrolytes have achieved superionic conductivities with excellent deformability, the air-sensitive behaviors of them are detrimental to the large-scale production. Considerable efforts are in progress to tackle this issue via various strategies in recent years. This review provides an overview of several classes of promising sulfide solid electrolytes. The principle and strategies for improving the resistance of these sulfide electrolytes against air are thoroughly discussed. We also point out the major challenges that all-solid-state batteries and different types of sulfide electrolytes face for practical applications.

17.
Ann Vasc Surg ; 87: 446-460, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35688403

RESUMO

BACKGROUND: Coarctation of the aorta with poststenotic aneurysms is rare and complex. Here we report a relatively large group of endovascular treatments for the disease. MATERIALS AND METHODS: Fifteen patients from two centers between 2006 and 2019 were included in the study. The patients were retrospectively divided into two groups. Patients in the complex group had insufficient proximal landing zone (<2 cm) or the zigzag shape of aorta. Their demographics, clinical manifestations, endovascular procedures, and follow-up results were analyzed. RESULTS: There were 7 patients in the simple group and 8 patients in the complex group. Eleven patients were symptomatic. Despite the unfavorable anatomy in the complex group, technical success reached 100%. The diameter of coarctation increased from 8.6 mm to 16.7 mm with poststenotic aneurysms successfully excluded at the same time. In patients without sufficient proximal landing zone, left subclavian artery was covered by the stent grafts and then sacrificed (three patients) or revascularized (four patients). Other than one patient who suffered iliac artery rupture and received open repair, there was no other perioperative complications. Computed tomography angiography repeated at mean 42 months postoperation confirmed patency of stents and the exclusion of aneurysms with no aortic wall injury. Mild endoleaks occurred in two patients in the complex group and were left to observation. During 55.0 months follow-up, except for one patient who received secondary left subclavian artery fenestration, all other patients remained asymptomatic. CONCLUSIONS: Endovascular treatments for coarctation of the aorta with poststenotic aneurysm showed a high technical success and could be an alternative solution for such disease.


Assuntos
Aneurisma , Aneurisma da Aorta Torácica , Coartação Aórtica , Doenças da Aorta , Implante de Prótese Vascular , Procedimentos Endovasculares , Adulto , Humanos , Coartação Aórtica/complicações , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/cirurgia , Implante de Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/métodos , Aneurisma da Aorta Torácica/cirurgia , Prótese Vascular/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Stents/efeitos adversos , Aneurisma/cirurgia , Aorta/cirurgia , Doenças da Aorta/cirurgia
18.
Angew Chem Int Ed Engl ; 61(50): e202211478, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260436

RESUMO

Proton insertion chemistry in aqueous zinc-ion batteries (AZIBs) is becoming a research hotspot owing to its fast kinetics and additional capacities. However, H+ storage mechanism has not been deciphered in the popular MoS2 -based AZIBs. Herein, we innovatively prepared a MoS2 /poly(3,4-ethylenedioxythiophene) (MoS2 /PEDOT) hybrid, where the intercalated PEDOT not only increases the interlayer spacing (from 0.62 to 1.29 nm) and electronic conductivity of MoS2 , but also activates the proton insertion chemistry. Thus, highly efficient and reversible H+ /Zn2+ co-insertion/extraction behaviors are demonstrated for the first time in aqueous Zn-MoS2 batteries. More intriguingly, the co-inserted protons can act as lubricants to effectively shield the electrostatic interactions between MoS2 /PEDOT host and divalent Zn2+ , enabling the accelerated ion-diffusion kinetics and exceptional rate performance. This work proposes a new concept of "proton lubricant" driving Zn2+ transport and broadens the horizons of Zn-MoS2 batteries.

19.
Small ; 17(12): e2006719, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33656247

RESUMO

The pyrrhotite Fe7 S8 with mixed Fe-valence possesses high theoretical capacity, high conductivity, low discharge/charge voltage plateaus, and superior redox reversibility but suffers from structural degradation upon (de)potassiation process due to severe volume variations. Herein, to conquer this issue, a novel hierarchical architecture of confining nano-Fe7 S8 in carbon nanotubes covalently bonded onto 3D few-layer graphene (Fe7 S8 @CNT@3DFG) is designed for potassium storage. Notably, CNTs could successfully grow on the surface of 3DFG via a tip-growth model under the catalytic effect of Fe3 C. Such structure enables the hierarchical confinement of 0D nano-Fe7 S8 to 1D CNTs and further 1D CNTs to 3DFG, effectively buffering the volume variations, prohibiting the agglomeration of Fe7 S8 nanograins, and boosting the ionic/electronic transportation through the stable and conductive CNTs-grafted 3DFG framework. The as-prepared Fe7 S8 @CNT@3DFG electrode delivers an exceptional rate capability (502 mAh g-1 at 50 mA g-1 with 277 mAh g-1 at 1000 mA g-1 ) and an excellent long-term cyclic stability up to 1300 cycles. Besides, the in-situ XRD and ex-situ XPS/HRTEM results first elucidate the highly reversible potassium-storage mechanism of Fe7 S8 . Furthermore, the designed potassium full-cell employing Fe7 S8 @CNT@3DFG anode and potassium Prussian blue (KPB) cathode delivers a promising energy density of ≈120 Wh kg-1 , demonstrating great application prospects.

20.
Luminescence ; 36(4): 894-903, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33440065

RESUMO

Graphene quantum dots (GQDs) could be regarded as graphene with a lateral dimension less than 100 nm. Compared with graphene, GQDs not only possess the excellent properties of graphene but also have been proven to have low toxicity, high fluorescence stability, strong water solubility, as well as better biocompatibility. In this work, an amide bond-based, N-doped graphene quantum dot was synthesized using a simple hydrothermal method. When the reaction time was 4 h and the temperature was 180°C, fluorescence excitation and emission peaks of the product were 340 nm and 450 nm, respectively. Its interaction with human serum albumin (HSA) was investigated using spectroscopy, gel electrophoresis, and molecular simulation. Gel electrophoresis showed that the product did not cause complete scission of the peptide chain in HSA, indicating good biocompatibility. The results of molecular docking showed that the product tended to bind to site III of HSA. This paper provides a meaningful reference for design and development in nanomedicine.


Assuntos
Grafite , Pontos Quânticos , Glicina , Humanos , Simulação de Acoplamento Molecular , Nitrogênio , Albumina Sérica Humana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa