Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(2): 524-535, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326175

RESUMO

As one of the most abundant components in human milk oligosaccharides, 2'-fucosyllactose (2'-FL) possesses versatile beneficial health effects. Although most studies focused on overexpressing or fine-tuning the expression of pathway enzymes and achieved a striking increase of 2'-FL production, directly facilitating the metabolic flux toward the key intermediate GDP-l-fucose seems to be ignored. Here, multienzyme complexes consisting of sequential pathway enzymes were constructed by using specific peptide interaction motifs in recombinant Escherichia coli to achieve a higher titer of 2'-FL. Specifically, we first fine-tuned the expression level of pathway enzymes and balanced the metabolic flux toward 2'-FL synthesis. Then, two key enzymes (GDP-mannose 4,6-dehydratase and GDP- l-fucose synthase) were self-assembled into enzyme complexes in vivo via a short peptide interaction pair RIAD-RIDD (RI anchoring disruptor-RI dimer D/D domains), resulting in noticeable improvement of 2'-FL production. Next, to further strengthen the metabolic flux toward 2'-FL, three pathway enzymes were further aggregated into multienzyme assemblies by using another orthogonal protein interaction motif (Spycatcher-SpyTag or PDZ-PDZlig). Intracellular multienzyme assemblies remarkably enlarged the flux toward 2'-FL biosynthesis and showed a 2.1-fold increase of 2'-FL production compared with a strain expressing free-floating and unassembled enzymes. The optimally engineered strain EZJ23 accumulated 4.8 g/L 2'-FL in shake flask fermentation and was capable of producing 25.1 g/L 2'-FL by fed-batch cultivation. This work provides novel approaches for further improvement and large-scale production of 2'-FL and demonstrates the effectiveness of spatial assembly of pathway enzymes to improve the production of valuable products in the engineered host strain.


Assuntos
Escherichia coli , Fucose , Trissacarídeos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Guanosina Difosfato Fucose/metabolismo , Engenharia Metabólica/métodos , Complexos Multienzimáticos/metabolismo , Peptídeos/metabolismo , Trissacarídeos/biossíntese
2.
J Obstet Gynaecol ; 43(1): 2171283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36744815

RESUMO

Cervical cancer (CC) is a common malignant neoplasm in gynecology. There is increasing evidence to suggest that microRNAs (miRNAs) act as crucial regulators of CC. However, whether miR-10a-5p plays a role in CC is under investigation. The aim of this stuy was to assess the miR-10a-5p expression pattern in the development of CC and investigate its downstream target. MiR-10a-5p inhibition decreased CC cell proliferation and impaired CC cell invasion and migration but enhanced apoptosis. UBE2I was a direct target of miR-10a-5p. QRT-PCR results showed a down-regulation of UBE2I in CC cells, opposing miR-10a-5p. Besides, overexpression of miR-10a-5p down-regulated UBE2I. Functional rescue experiments further indicated the miR-10a-5p-UBE2I axis was linked to CC cell growth, apoptosis and metastasis. MiR-10a-5p upregulation promotes cervical cancer development by inhibiting UBE2I. These results also predict that miR-10a-5p may be a potential target for the clinical treatment of CC.IMPACT STATEMENTWhat is already known on this subject? As a widely researched cancer-related miRNA, the overexpression of miR-10a-5p has been verified in various cancers. It has been described in a meta-analysis report that there were 42 miRNAs up-regulated and 21 miRNAs down-regulated in different stages of cervical cancer tissue versus healthy tissue.What do the results of this study add? We verified that miR-10a-5p initiates and promotes tumor cell development by decreasing UBE2I abundance. This miR-10a-5p-mediated post-transcriptional regulation of UBE2I is involved in the tumorigenesis, invasion and migration of human cervical cancer.What are the implications of these findings for clinical practice and/or further research? These findings provide mechanistic insights into how miR-10a-5p regulates cervical cancer hyper-proliferation and metastasis, as well as a new target for clinical treatment. Nevertheless, whether miR-10a-5p/UBE2I axis can be regulated by non-invasive methods need further exploration, which will be the focus of our future research.


Assuntos
MicroRNAs , Enzimas de Conjugação de Ubiquitina , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Transdução de Sinais/genética , Enzimas de Conjugação de Ubiquitina/genética , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
3.
Bioorg Chem ; 120: 105624, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065464

RESUMO

A series of 5f-based new compounds has been designed and synthesized. In vitro screening demonstrated that the binding affinity and selectivity on aldose reductase (AR) were positively correlated with its antioxidation capacity. Compound 6d was verified the most active candidate, where its IC50, selective index (SI), and EC50 value was 22.3 ± 1.6 nM, 236.2, and 8.7 µM respectively. 6d was confirmed as both an excellent antioxidant and aldose reductase inhibitor (ARI). It was identified as a mixed type ARI with Ki and Kis values of 23.94 and 1.20 nM. When evaluated by a high-glucose impaired chicken embryo model, it was found that 6d attenuated the incidence of neural tube defect (NTD) and death rate in a dose-dependent manner. It significantly improved the hyperglycemia-induced abnormalities of body weight and morphology of chicken embryos. 6d reversed the hyperglycemia-raised AR activity, sorbitol accumulation, reactive oxygen species (ROS) and malondialdehyde (MDA) levels. It restored the high-glucose-reduced Pax3 protein expression. At the same dose (0.5 µM), 6d showed better effects than 5f in all the above detections. By the way, 6d did not affect hyperglycemia-elevated aldehyde reductase (ALR1) activity. This evidence together with its kinetic properties, implicated that 6d is a high selective ARI without the suspicion of promiscuity. 6d was proved here an effective agent to treat diabetic peripheral neuropathy (DPN). Whether 6d has potential to treat other types of diabetic complications (DC) needs to be further investigation.


Assuntos
Aldeído Redutase , Hiperglicemia , Animais , Antioxidantes/farmacologia , Embrião de Galinha , Inibidores Enzimáticos/uso terapêutico , Glucose , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes
4.
Neoplasma ; 69(1): 183-192, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734529

RESUMO

Recently, change in the GNG13 expression has been shown to result in multiple congenital malformations and sexual reversal, and it was also found in the brain. The aim of this study was to measure the expression levels in epithelial ovarian cancer (EOC) and breast cancer (BC) and assess their value as a potential prognostic marker. The correlation of GNG13 protein expression was detected by immunohistochemistry (IHC) in 119 EOC and 125 BC tissues. Assessment of the associations between GNG13 levels and various clinicopathological features was identified, the relationship between GNG13 and prognosis in BC and EOC patients was analyzed using online resources of Oncomine and Kaplan-Meier plotter. Protein expression levels of GNG13 were both significantly lower in BC and EOC compared with normal tissues (p<0.0001 and p<0.001, respectively). Among the clinicopathological characteristics of BC, tumor grade (p=0.001) and TNM stage (p=0.001) were significantly associated with low expression of GNG13. While in EOC, low expression of GNG13 was significantly related to FIGO stage (p=0.001), presence of metastasis (p=0.001), and CA125 (p=0.001). Our data suggest that GNG13 expression maybe as a new inhibitor, which can strongly inhibit metastasis and partially attenuates tumor growth in EOC and BC.


Assuntos
Neoplasias da Mama , Carcinoma Epitelial do Ovário , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Neoplasias Ovarianas , Biomarcadores Tumorais , Neoplasias da Mama/genética , Antígeno Ca-125 , Carcinoma Epitelial do Ovário/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Ovarianas/genética , Prognóstico
5.
J Obstet Gynaecol Res ; 48(8): 2122-2133, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716001

RESUMO

BACKGROUND: Preeclampsia (PE), the most significant adverse exposure to cardiovascular risk during pregnancy, is one of the three major factors contributing to maternal and fetal mortality and the leading cause of preterm birth. Recently, various miRNAs have been reported to participate in PE occurrence and development. Nevertheless, the regulatory impact of miR-195-5p in PE is still indistinct. METHODS: Quantitative realtime-PCR (qRT-PCR), western blot, and fluorescence in situ hybridization (FISH) assay were performed to examine miR-195-5p and FGF2 expressions in PE serum samples or HTR-8/SVneo and TEV-1 cells. CCK8, flow cytometry, wound scratch, and transwell assays were conducted to determine cell viability, cycle, apoptosis, migration, and invasion. Dual-luciferase reporter assay unveiled the relationship between miR-195-5p and FGF2. Migration-related and invasion-related protein expressions were measured by western blot assay. RESULTS: miR-195-5p was prominently downregulated while FGF2 was increased in serum samples from PE patients and hypoxia-treated human trophoblast cells. FGF2 was predicted as a downstream target of miR-195-5p and targeted association was verified by dual-luciferase reporter assay. Functional experiments elaborated that miR-195-5p could facilitate trophoblast cell proliferation and metastasis but hinder cell cycle and apoptosis. Inversely, overexpressing of FGF2 could reverse the effects of miR-195-5p on trophoblast cell growth. DISCUSSION: miR-195-5p was decreased in PE serum samples and cell lines, serving as a potential biomarker in protecting PE exacerbation by targeting FGF2.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Nascimento Prematuro , Movimento Celular , Proliferação de Células , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Trofoblastos/metabolismo
6.
J Cell Mol Med ; 24(16): 9114-9124, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638511

RESUMO

Abnormal expression of neuropilin and tolloid-like 1 (NETO1) has been detected in some human carcinomas. However, the expression of NETO1 and the underlying mechanism in epithelial ovarian cancer (EOC) remain unknown. In this study, we found that a higher NETO1 expression in EOC tissue samples compared to normal ovarian tissue samples was significantly correlated with worse overall survival. Additionally, Cox regression analysis suggested that NETO 1 was independently associated with overall survival. NETO1 overexpression enhanced the EOC cells' migration and invasion capability in vitro via regulation of actin cytoskeleton. Mechanistically, silencing NETO1 reduced the expression of ß-tubulin, F-actin and KIF2A. In conclusion, our results demonstrated the critical role of NETO1 in EOC invasion, and therapies aimed at inhibiting its expression or activity might significantly control EOC growth, invasion and metastatic dissemination.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Neuropilinas/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Cinesinas/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Tubulina (Proteína)/metabolismo
7.
Mol Genet Genomics ; 295(6): 1369-1378, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656703

RESUMO

Large-scale studies on genetic risk loci for melatonin receptor 1B (MTNR1B) gene and GDM risk have not been well generalized to the Chinese population. In this study, we performed two-stage case-control study: 1.429 pregnant women: 753 GDM/676 controls in the Southern Chinese population by genotyping 5 SNPs (rs10830963, rs1387153, rs2166706, rs1447352, and rs4753426) in MTNR1B. Genotypes were determined using the Sequenom MassARRAY platform and TaqMan allelic discrimination assay. Interactions between genetic variants and age/BMI as predictors of GDM risk were evaluated under the logistic regression model. In the first stage, the SNP rs10830963 was discovered to be potentially related to GDM risk (additive model: OR = 1.27, 95%CI = 1.05-1.55, P = 0.025), which was further confirmed in the second stage with a similar effect (additive model: OR = 1.53, 95%CI = 1.19-1.98, P = 0.005). In the combined stage, the G allele of rs10830963 was potentially associated with GDM risk (additive model: OR = 1.36, 95%CI = 1.17-1.59, P < 0.001; dominant model: OR = 1.45, 95%CI = 1.15-1.83, P = 0.005). The rs10830963 interacted with age and BMI to contribute to GDM risk in the combined participants. And, the similar interactive effects for the other four SNPs also exist. These findings offer the potential to improve our understanding of the etiology of GDM, and particularly of biological mechanisms.


Assuntos
Diabetes Gestacional/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor MT2 de Melatonina/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Gravidez
8.
Exp Mol Pathol ; 117: 104561, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33121976

RESUMO

LncRNA PCGEM1 (PCGEM1) has been reported to exert essential effects on the development and progress of various tumors, while the detailed effects and possible mechanisms of PCGEM1 in cervical carcinoma remain unknown. In the present study, PCGEM1 was over-expressed in cervical carcinoma cells as evidenced by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Knockdown of PCGEM1 significantly repressed proliferation, migration, and invasion, while induced G1 arrest in cervical carcinoma cells. In addition, PCGEM1 was predicted to target miR-642a-5p by bioinformatics software, which was further confirmed by luciferase reporter assay. Besides, RT-qPCR assay indicated that miR-642a-5p expression was decreased in cervical carcinoma cells and knockdown of PCGEM1 could accelerate miR-642a-5p expression. Moreover, inhibition of miR-642a-5p partly abolished the functions of PCGEM1 knockdown on proliferation, cell cycle, migration and invasion of cervical carcinoma cells. Furthermore, miR-642a-5p could bind to the 3'-UTR of LGMN, which was over-expressed in the cervical carcinoma cells. Suppression of LGMN partly restored the functions of miR-642a-5p inhibitor on proliferation, cell cycle distribution, migration and invasion in the cervical carcinoma cells treated with the PCGEM1 shRNA. Taken together, our data indicated that knockdown of PCGEM1 inhibited proliferation, migration and invasion in cervical carcinoma by modulating the miR-642a-5p/ LGMN axis.


Assuntos
Carcinoma/genética , Cisteína Endopeptidases/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/genética , Neoplasias do Colo do Útero/patologia
9.
Langmuir ; 35(8): 3005-3012, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30712347

RESUMO

When studying surface nanobubbles on film-coated substrates, a class of bubble-like domains called blisters are probably forming at the solid-liquid interface together with nanobubbles. This may easily lead to a misunderstanding of the characteristics and applications of surface nanobubbles and thus continue to cause problems within the nanobubble community. Therefore, how to distinguish surface nanobubbles from blisters is a problem. Herein, the morphology and properties of blisters are investigated on both smooth and nanopitted polystyrene (PS) films in degassed water. The morphology and contact angle of blisters are similar to those of surface nanobubbles. However, blisters were observed to be punctured under the tip-blister interaction and be torn broken by an atomic force microscope tip during the process of scanning. At the same time, nanopits on the surface of blisters that formed on a pitted PS film can be seen clearly. These provide direct and visual evidence for distinguishing blisters from surface nanobubbles. In addition, surface nanobubbles and blisters on smooth and pitted PS films in air-equilibrated water are studied. No punctured surface nanobubble was observed, and the force curves obtained on surface nanobubbles and the change in height of blisters and surface nanobubbles under a large scanning force show that surface nanobubbles are much softer than blisters.

10.
Cell Physiol Biochem ; 46(6): 2624-2635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763906

RESUMO

BACKGROUND/AIMS: Mesenchymal stem cells (MSCs) do not readily migrate to appropriate sites, and this creates a major obstacle for their use in the treatment of graft-versus-host disease (GVHD). Intercellular adhesion molecule-1 (ICAM-1) can guide the homing of various immune cells to the proper anatomical location within secondary lymphoid organs (SLOs), which are the major niches for generating immune responses or tolerance. MSCs rarely migrate to SLOs after intravenous infusion, and are constitutively low expression of ICAM-1. So in our previous work, ICAM-1 was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (ICAM-1MSCs). Here, we hypothesized that ICAM-1highMSCs may significantly improve their immunomodulatory effect. METHODS: We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate ICAM-1highMSCs immunomodulatory effect on dendritic cells (DCs) and T cells in vitro and in vivo. MSCs were labeled with carboxyfluorescein diacetate succinimidylester (CFSE) to detect its distribution in mouse model. RESULTS: Our in vitro analyses revealed ICAM-1 MSCs could suppress DCs maturation according to co-culture methods and suppress the T cell immune response according to the mixed lymphocyte response (MLR) and lymphoblast transformation test (LTT) tests. We found that infusion of ICAM-1highMSCs potently prolonged the survival of GVHD mouse model. The infused ICAM-1highMSCs migrate to SLOs in vivo, and suppressed DCs maturation, suppressed CD4+ T cell differentiation to Th1 cells, and increased the ratios of Treg cells. CONCLUSIONS: Taken together, these data demonstrate that ICAM-1highMSCs had an enhanced immunosuppressive effect on DCs and T cells, which may help explain the protective effect in a GVHD model. This exciting therapeutic strategy may improve the clinical efficacy of MSC-based therapy for GVHD.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Molécula 1 de Adesão Intercelular/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima , Animais , Técnicas de Cocultura , Células Dendríticas/imunologia , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Imunoterapia , Molécula 1 de Adesão Intercelular/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
11.
Tumour Biol ; 39(3): 1010428317695014, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28349821

RESUMO

Lysosome-associated membrane protein 3 belongs to the lysosome-associated membrane glycoprotein family, which is associated with lymph node, metastasis, poor overall survival, and resistance to chemotherapy and radiotherapy. Epithelial ovarian cancer is one of the most deadly global female gynecologic malignant tumors. Its clinical outcome is poor and most epithelial ovarian cancer patients tend to relapse because of drug resistance. However, lysosome-associated membrane protein 3 expression in epithelial ovarian cancer and its relationship between clinicopathologic factors remain poorly understood. To clarify the prognostic implications of lysosome-associated membrane protein 3 in epithelial ovarian cancer, we analyzed both messenger RNA and protein levels of lysosome-associated membrane protein 3 in ovarian carcinomas. Polymerase chain reaction results showed higher expression of lysosome-associated membrane protein 3 messenger RNA in epithelial ovarian cancer than in noncancerous tissues. Immunohistochemical results showed that high lysosome-associated membrane protein 3 cytoplasmic expression was significantly related to tumor grade ( p = 0.038), lymph node metastasis ( p = 0.049), metastasis ( p < 0.001), level of CA125 ( p = 0.030), and International Federation of Gynecology and Obstetrics (FIGO) ( p < 0.001). High lysosome-associated membrane protein 3 nuclear expression was significantly associated with tumor grade ( p = 0.046), tumor single or double (representative whether the tumor involving one or both ovaries) ( p = 0.016), metastasis ( p < 0.001), and FIGO stage ( p < 0.001). Survival analysis indicated that high lysosome-associated membrane protein 3 cytoplasmic expression (hazard ratio: 4.632, 95% confidence interval: 2.421-8.864; p < 0.001), patients' age (hazard ratio: 1.729, 95% confidence interval: 1.027-2.911; p = 0.039), and FIGO stage (hazard ratio: 2.049, 95% confidence interval: 1.113-3.774; p = 0.021) were significantly correlated with poor survival outcome of epithelial ovarian cancer patients.


Assuntos
Proteínas de Membrana Lisossomal/biossíntese , Proteínas de Neoplasias/biossíntese , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/genética , Prognóstico , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfonodos/patologia , Metástase Linfática , Proteínas de Membrana Lisossomal/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Análise de Sobrevida
12.
Stem Cells ; 32(7): 1890-903, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24496849

RESUMO

Inefficient homing of systemically infused mesenchymal stem cells (MSCs) limits the efficacy of existing MSC-based clinical graft-versus-host disease (GvHD) therapies. Secondary lymphoid organs (SLOs) are the major niches for generating immune responses or tolerance. MSCs home to a wide range of organs, but rarely to SLOs after intravenous infusion. Thus, we hypothesized that targeted migration of MSCs into SLOs may significantly improve their immunomodulatory effect. Here, chemokine receptor 7 (CCR7) gene, encoding a receptor that specifically guides migration of immune cells into SLOs, was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (MSCs/CCR7). We found that infusion of MSCs/CCR7 potently prolonged the survival of GvHD mouse model. The infused MSCs/CCR7 migrate to SLOs, relocate in proximity with T lymphocytes, therefore, potently inhibited their proliferation, activation, and cytotoxicity. Natural killer (NK) cells contribute to the early control of leukemia relapse. Although MSCs/CCR7 inhibited NK cell activity in vitro coculture, they did not impact on the proportion and cytotoxic capacities of NK cells in the peripheral blood of GvHD mice. In an EL4 leukemia cell loaded GvHD model, MSCs/CCR7 infusion preserved the graft-versus-leukemia (GvL) effect. In conclusion, this study demonstrates that CCR7 guides migration of MSCs to SLOs and thus highly intensify their in vivo immunomodulatory effect while preserving the GvL activity. This exciting therapeutic strategy may improve the clinical efficacy of MSC based therapy for immune diseases.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Leucemia , Tecido Linfoide/imunologia , Células-Tronco Mesenquimais/fisiologia , Receptores CCR7/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Quimiotaxia , Humanos , Imunomodulação , Células Matadoras Naturais/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
13.
Cancer Cell Int ; 14(1): 112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25546354

RESUMO

BACKGROUND: Suberoylanilide hydroxamic acid (SAHA) is a member of the hydroxamic acid class of the newly developed histone deacetylase inhibitors. Recently, Suberoylanilide hydroxamic acid has attracted increasing attention because of its antitumor activity and synergistic effects in combination with a variety of traditional chemotherapeutic drugs. Paclitaxel (PTX), is a natural anticancer drugs; however, resistance to paclitaxel has become a major challenge to the efficacy of this agent. The purpose of this study was to investigate the effects of the combined application of these two drugs on the paclitaxel-resistant ovarian cancer OC3/P cell line. METHODS: In the present study, the effects of Suberoylanilide hydroxamic acid or/and paclitaxel on OC3/P cells cultured in vitro were analyzed in terms of cell viability, migration, cell-cycle progression and apoptosis by CCK-8, wound healing and flow cytometry assays. Changes in cell ultrastructure were observed by transmission electron microscopy. The expression of genes and proteins related to proliferation, apoptosis and drug resistance were analyzed by quantitative real-time polymerase chain reaction and Western blot analyses. RESULTS: There was no cross-resistance of the paclitaxel-resistant ovarian cancer OC3/P cells to Suberoylanilide hydroxamic acid. Suberoylanilide hydroxamic acid combined with paclitaxel significantly inhibited cell growth and reduced the migration of OC3/P cells compared with the effects of Suberoylanilide hydroxamic acid or paclitaxel alone. Q-PCR showed the combination of Suberoylanilide hydroxamic acid and paclitaxel reduced intracellular bcl-2 and c-myc gene expression and increased bax gene expression more distinctly than the application of SAHA or paclitaxel alone. Moreover, the level of mdr1 gene expression in cells treated with Suberoylanilide hydroxamic acid was lower than that of the control group (P <0.05). Western blot analysis showed that Suberoylanilide hydroxamic acid alone or in combination with paclitaxel enhanced caspase-3 protein expression and degraded ID1 protein expression in OC3/P cells. CONCLUSION: Suberoylanilide hydroxamic acid inhibited the growth of paclitaxel-resistant ovarian cancer OC3/P cells and reduced migration by the induction of cell-cycle arrest, apoptosis and autophagy. These observations indicate the possible synergistic antitumor effects of sequential Suberoylanilide hydroxamic acid and paclitaxel treatment.

14.
Epilepsy Behav ; 31: 276-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269027

RESUMO

This study was designed to investigate the role of experimental febrile seizures in the induction of generalized clonic seizures and the involvement of heat-sensitive channel TRPV1. Pentylenetetrazol-induced clonic seizure was used as the seizure model, and Trpv1 gene knock-out and wild-type C57/BL6 mice were used as experimental subjects. Electroencephalograph and seizure behavior were recorded for the evaluation of the severity of seizures. Increased frequency of the experimental febrile seizures facilitated PTZ-induced generalized clonic seizures. Trpv1 gene deficiency decreased the properties of generalized clonic seizure. The intensity of experimental febrile seizures reduced the threshold to generalized clonic seizure, and Trpv1 gene deficiency decreased the susceptibility to PTZ-induced seizures following early-life hyperthermia challenges in mice.


Assuntos
Convulsivantes/toxicidade , Hipertermia Induzida , Pentilenotetrazol/toxicidade , Convulsões Febris/induzido quimicamente , Convulsões Febris/genética , Canais de Cátion TRPV/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/deficiência , Fatores de Tempo
15.
Acta Biochim Biophys Sin (Shanghai) ; 46(12): 1056-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25377438

RESUMO

Mesenchymal stem cells (MSCs) have been widely used in allogeneic stem cell transplantation. We compared immunologic and hematopoietic characteristics of MSCs derived from whole human umbilical cord (UC), as well as from different sections of UCs, including the amniotic membrane (AM), Wharton's jelly (WJ), and umbilical vessel (UV). Cell phenotypes were examined by flow cytometry. Lymphocyte transformation test and mixed lymphocyte reaction were performed to evaluate the immuno-modulatory activity of MSCs derived from UCs. The mRNA expression of cytokines was detected by real-time polymerase chain reaction. Hematopoietic function was studied by co-culturing MSCs with CD34(+) cells isolated from cord blood. Our results showed that MSCs separated from these four different sections including UC, WJ, UV, and AM had similar biological characteristics. All of the MSCs had multi-lineage differentiation ability and were able to differentiate into osteoblasts, adipocytes, and chondrocytes. The MSCs also inhibited the proliferation of allogeneic T cells in a dose-dependent manner. The relative mRNA expression of cytokines was examined, and the results showed that UCMSCs had higher interleukin-6 (IL6), IL11, stem cell factor, and FLT3 expression than MSCs derived from specific sections of UCs. CD34(+) cells had high propagation efficiencies when co-cultured with MSCs derived from different sections of UCs, among which UCMSCs are the most efficient feeding layer. Our study demonstrated that MSCs could be isolated from whole UC or specific sections of UC with similar immunomodulation and hematopoiesis supporting characteristics.


Assuntos
Hematopoese , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Primers do DNA , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/imunologia , Cordão Umbilical/imunologia
16.
Oncol Res ; 32(7): 1221-1229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948025

RESUMO

At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.


Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Cinesinas , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , MicroRNAs/genética , Feminino , Cinesinas/genética , Cinesinas/metabolismo , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Células HeLa , Invasividade Neoplásica
17.
Front Oncol ; 14: 1395549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898957

RESUMO

Objective: To investigate the application value of complete laparoscopy and Da Vinci robot esophagogastric anastomosis double muscle flap plasty in radical resection of proximal gastric cancer. Method: A retrospective descriptive study was used. The clinicopathological data of 35 patients undergoing radical operation for proximal gastric cancer admitted to Liaoning Cancer Hospital from January 2020 to December 2023 were collected. Variables evaluated: 1. Transoperative,2. Postoperative, 3. Follow-up. In relation to follow-up, esophageal disease status reflux, anastomosis, nutritional status score, serum hemoglobin, tumor recurrence, and metastasis were investigated. The trans and postoperative variables were obtained from the clinical records and the patients were followed up in outpatient department and by telephone. Result: Among the 35 patients, 17 underwent robotic surgery and 18 underwent laparoscopic surgery. There were 29 males and 6 females. 1) Transoperative: Robotic surgery: The operation time was (305.59 ± 22.07) min, the esophagogastric anastomosis double muscle flap plasty time was (149.76 ± 14.91) min, the average number of lymph nodes cleared was 30, and the average intraoperative blood loss was 30 ml. Laparoscopic surgery: The mean operation time was 305.17 ± 26.92min, the operation time of esophagogastric anastomosis double muscle flap was (194.06 ± 22.52) min, the average number of lymph nodes cleared was 24, and the average intraoperative blood loss was 52.5 ml. 2) Postoperative: Robotic surgery: the average time for patients to have their first postoperative anal emission was 3 days, the average time to first postoperative feeding was 4 days, and the average length of hospitalization after surgery was 8 days. Laparoscopic surgery: the average time for patients to have their first postoperative anal emission was 5 days, the average time to first postoperative feeding was 6 days, the average length of hospitalization after surgery was 10 days. 3) Follow-up: The follow-up time ranged from 1 to 42 months, with a median follow-up time of 24 months. Conclusion: Complete Da Vinci robot and laparoscopic esophagogastric anastomosis double muscle flap plasty for radical resection of proximal gastric cancer can minimize surgical incision, reduce abdominal exposure, accelerate postoperative recovery of patients, and effectively prevent reflux esophagitis and maintain good hemoglobin concentration and nutritional status. The advantages of robotic surgery is less intraoperative bleeding and faster post-surgical recovery, but it is relatively more expensive.

18.
Int J Biol Macromol ; 269(Pt 1): 132081, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705330

RESUMO

3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.


Assuntos
Escherichia coli , Engenharia Metabólica , Neisseria meningitidis , Sialiltransferases , Escherichia coli/genética , Escherichia coli/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Engenharia Metabólica/métodos , Neisseria meningitidis/genética , Neisseria meningitidis/enzimologia , Mutação , Oligossacarídeos/biossíntese , Fermentação
19.
Insects ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667421

RESUMO

Artificial silkworm diets significantly impact farm profitability. Sustainable cocoon production depends on the continuous improvement of feed efficiency to reduce costs and nutrient losses in the feed. This study used metabolomics to explore the differences in silkworm cocoons and hemolymph under two modes of rearing: an artificial diet and a mulberry-leaf diet. Nine metabolites of silkworm cocoons and hemolymph in the mulberry-leaf group were higher than those in the artificial-diet group. Enrichment analysis of the KEGG pathways for these metabolites revealed that they were mainly enriched in the valine, leucine, and isoleucine biosynthesis and degradation pathways. Hence, the artificial silkworm diet was supplemented various concentrations of valine were supplemented to with the aim of examining the impact of valine on their feeding and digestion of the artificial diet. The results indicated that valine addition had no significant effect on feed digestibility in the fifth-instar silkworm. Food intake in the 2% and 4% valine groups was significantly lower than that in the 0% valine group. However, the 2% and 4% valine groups showed significantly improved cocoon-production efficiency, at 11.3% and 25.1% higher, respectively. However, the cocoon-layer-production efficiencies of the 2% and 4% valine groups decreased by 7.7% and 13.9%, respectively. The research confirmed that valine is an effective substance for enhancing the feed efficiency of silkworms.

20.
Stem Cells Int ; 2024: 6693292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510207

RESUMO

Objective: Our previous study found that it could significantly increase the expression of IL32 after stimulating the human umbilical cord mesenchymal stem cells (S-HuMSCs). However, its role on the osteogenesis and cranial bone regeneration is still largely unknown. Here, we investigated the possible mechanism of this effect. Material and Methods. A series of experiments, including single-cell sequencing, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting, were carried out to evaluate the characteristic and adipogenic-osteogenic differentiation potential of IL-32 overexpression HuMSCs (IL-32highHuMSCs) through mediating the P38 signaling pathway. Moreover, a rat skull bone defect model was established and treated by directly injecting the IL-32highHuMSCs to conduct its role on the cranial bone regeneration. Results: In total, it found that compared to HuMSCs, IL32 was significantly increased and promoted the osteogenic differentiation (lower expressions of PPARγ, Adiponectin, and C/EBPα, and increased expressions of RUNX2, ALP, BMP2, OPN, SP7, OCN, and DLX5) in the S-HuMSCs (P < 0.05). Meanwhile, the enhanced osteogenic differentiation of HuMSCs was recovered by IL-32 overexpression (IL-32highHuMSCs) through activating the P38 signaling pathway, like as the S-HuMSCs (P < 0.05). However, the osteogenic differentiation potential of IL-32highHuMSCs was significantly reversed by the P38 signaling pathway inhibitor SB203580 (P < 0.05). Additionally, the HuMSCs, S-HuMSCs, and IL-32highHuMSCs all presented adipogenic-osteogenic differentiation potential, with higher levels of CD73, CD90, and CD105, and lower CD14, CD34, and CD45 (P > 0.05). Furthermore, these findings were confirmed by the rat skull bone defect model, in which the cranial bone regeneration was more pronounced in the IL-32highHuMSCs treated group compared to those in the HuMSCs group, with higher expressions of RUNX2, ALP, BMP2, and DLX5 (P < 0.05). Conclusion: We have confirmed that S-HuMSCs can enhance the osteogenesis and cranial bone regeneration through promoting IL-32-mediated P38 signaling pathway, which is proved that IL-32 may be a therapeutic target, or a biomarker for the treatment of cranial bone injuries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa