Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166463

RESUMO

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Eferocitose , Fator 6 Associado a Receptor de TNF/metabolismo , Aterosclerose/metabolismo , Inflamação/genética , Camundongos Knockout , Fenótipo , Apolipoproteínas E , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL
2.
J Biol Chem ; 299(8): 104958, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380083

RESUMO

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Assuntos
Prochlorococcus , Água do Mar , Transportadores de Cassetes de Ligação de ATP/metabolismo , Prochlorococcus/metabolismo , Ureia/metabolismo , Água do Mar/microbiologia
3.
BMC Vet Res ; 20(1): 390, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227948

RESUMO

BACKGROUND: This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp). The kynurenine assay was used to examine if Trp or prostaglandin E2 (PGE2) can increase the production of kynurenine in the bovine endometrial epithelial cells. RESULTS: Trp significantly stimulates insulin growth factor binding protein 1 (IGFBP1) expression, a common endometrial marker of conceptus elongation and uterus receptivity for ruminants. When bovine endometrial epithelial cells are treated with Trp, tryptophan hydroxylase-1 remains unchanged, but tryptophan 2,3-dioxygenase 2 (TDO2) is significantly increased, suggesting tryptophan is mainly metabolized through the kynurenine pathway. Kynurenine significantly stimulates IGFBP1 expression. Furthermore, Trp and kynurenine significantly increase the expression of aryl hydrocarbon receptor (AHR). CH223191, an AHR inhibitor, abrogates the induction of Trp and kynurenine on IGFBP1. PGE2 significantly induces the expression of TDO2, AHR, and IGFBP1. CONCLUSIONS: The regulation between Trp / kynurenine and PGE2 may be crucial for the receptivity of the bovine uterus.


Assuntos
Endométrio , Células Epiteliais , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Cinurenina , Receptores de Hidrocarboneto Arílico , Triptofano Oxigenase , Triptofano , Animais , Bovinos , Feminino , Triptofano/farmacologia , Triptofano/metabolismo , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/genética , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética
4.
Mol Cancer ; 20(1): 79, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044846

RESUMO

BACKGROUND: Somatic mutations are involved in hepatocellular carcinoma (HCC) progression, but the genetic mechanism associated to hepatocarcinogenesis remains poorly understood. We report that Eyes absent homolog 2 (EYA2) suppresses the HCC progression, while EYA2(A510E) mutation identified by exome sequencing attenuates the tumor-inhibiting effect of EYA2. METHODS: Whole-exome sequencing was performed on six pairs of human HCC primary tumors and matched adjacent tissues. Focusing on EYA2, expression level of EYA2 in human HCC samples was evaluated by quantitative real-time PCR, western blot and immunohistochemistry. Loss- and gain-of-function studies, hepatocyte-specific deletion of EYA2 (Eya2-/-) in mice and RNA sequencing analysis were used to explore the functional effect and mechanism of EYA2 on HCC cell growth and metastasis. EYA2 methylation status was evaluated using Sequenom MassARRAY and publicly available data analysis. RESULTS: A new somatic mutation p.Ala510Glu of EYA2 was identified in HCC tissues. The expression of EYA2 was down-regulated in HCC and associated with tumor size (P = 0.001), Barcelona Clinic Liver Cancer stage (P = 0.016) and tumor differentiation (P = 0.048). High level of EYA2 was correlated with a favorable prognosis in HCC patients (P = 0.003). Results from loss-of-function and gain-of-function experiments suggested that knockdown of EYA2 enhanced, while overexpression of EYA2 attenuated, the proliferation, clone formation, invasion, and migration of HCC cells in vitro. Delivery of EYA2 gene had a therapeutic effect on inhibition of orthotopic liver tumor in nude mice. However, EYA2(A510E) mutation led to protein degradation by unfolded protein response, thus weakening the inhibitory function of EYA2. Hepatocyte-specific deletion of EYA2 in mice dramatically promoted diethylnitrosamine-induced HCC development. EYA2 was also down-regulated in HCC by aberrant CpG methylation. Mechanically, EYA2 combined with DACH1 to transcriptionally regulate SOCS3 expression, thus suppressing the progression of HCC via SOCS3-mediated blockade of the JAK/STAT signaling pathway. CONCLUSIONS: In our study, we identified and validated EYA2 as a tumor suppressor gene in HCC, providing a new insight into HCC pathogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinases/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fatores de Transcrição STAT/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Adulto , Idoso , Animais , Carcinoma Hepatocelular/metabolismo , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
5.
J Pathol ; 249(2): 255-267, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215640

RESUMO

The γ-secretase complex is a presenilin-dependent aspartyl protease involved in the intramembranous cleavage of various type I transmembrane proteins. As a type I transmembrane protein, CD147 is highly expressed in hepatoma cells and promotes cell proliferation, migration, and invasion. However, the direct underlying mechanism of how CD147 promotes cancer cell proliferation is unknown. Here, we demonstrated that CD147 undergoes an intramembranous cleavage by the γ-secretase at lysine 231 to release its intracellular domains (ICDs). The nuclear translocation of the CD147ICD regulated Notch1 expression by directly binding to the NOTCH1 promoter and promoted the activation of the Notch signaling pathway. Simultaneously, overexpression of CD147ICD promoted cancer cell proliferation via Notch1 signaling. In 102 cases of human hepatocellular carcinoma (HCC) tissues, patients with a high positive rate of nuclear CD147ICD expression had a significantly poor overall survival compared with patients with a low positive rate of nuclear CD147ICD expression. We confirmed that nuclear CD147ICD predicted a poor prognosis in human HCC. The combined therapy of the γ-secretase complex inhibitor and CD147-directed antibody showed better efficacy than monotherapy in orthotopic transplantation HCC mouse models. In conclusion, CD147 is cleaved by the γ-secretase and releases CD147ICD to the cell nucleus, promoting Notch1 expression via direct binding to the NOTCH1 promoter. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Basigina/metabolismo , Carcinoma Hepatocelular/enzimologia , Proliferação de Células , Neoplasias Hepáticas/enzimologia , Receptor Notch1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Antineoplásicos Imunológicos/farmacologia , Basigina/antagonistas & inibidores , Basigina/genética , Sítios de Ligação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Proteólise , Receptor Notch1/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Adv ; 10(41): eadp6678, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39383221

RESUMO

The reaction center-light-harvesting complex 1 (RC-LH1) plays an essential role in the primary reactions of bacterial photosynthesis. Here, we present high-resolution structures of native monomeric and dimeric RC-LH1 supercomplexes from Rhodobacter (Rba.) blasticus using cryo-electron microscopy. The RC-LH1 monomer is composed of an RC encircled by an open LH1 ring comprising 15 αß heterodimers and a PufX transmembrane polypeptide. In the RC-LH1 dimer, two crossing PufX polypeptides mediate dimerization. Unlike Rhodabacter sphaeroides counterpart, Rba. blasticus RC-LH1 dimer has a less bent conformation, lacks the PufY subunit near the LH1 opening, and includes two extra LH1 αß subunits, forming a more enclosed S-shaped LH1 ring. Spectroscopic assays reveal that these unique structural features are accompanied by changes in the kinetics of quinone/quinol trafficking between RC-LH1 and cytochrome bc1. Our findings reveal the assembly principles and structural variability of photosynthetic RC-LH1 supercomplexes, highlighting diverse strategies used by phototrophic bacteria to optimize light-harvesting and electron transfer in competitive environments.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Rhodobacter , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Rhodobacter/metabolismo , Modelos Moleculares , Microscopia Crioeletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Multimerização Proteica , Conformação Proteica , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cinética
7.
Cancer Lett ; 604: 217254, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39270768

RESUMO

As the most abundant post-transcriptional modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in cancer cell proliferation, invasion and chemoresistance. However, its specific effects on chemosensitivity to oxaliplatin-based regimens and the impact of these drugs on m6A methylation levels in colorectal cancer (CRC) remain largely unexplored. In this study, we demonstrated that the m6A methyltransferase Wilms tumor 1-associating protein (WTAP) weakens oxaliplatin chemosensitivity in HCT116 and DLD1 cells. Mechanistically, oxaliplatin treatment upregulated WTAP expression, preventing multiple forms of cell death simultaneously, a process known as PANoptosis, by decreasing intracellular oxidative stress through maintaining the expression of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element, in an m6A-dependent manner. In addition, high WTAP expression in CRC patients is associated with a poor prognosis and reduced benefit from standard chemotherapy by clinical data analysis of The Cancer Genome Atlas (TCGA) database and patient cohort study. These findings suggest that targeting WTAP-NRF2-PANoptosis axis could enhance the antitumor efficacy of oxaliplatin-based chemotherapy in CRC treatment.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2 , Oxaliplatina , Humanos , Oxaliplatina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Células HCT116 , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia
8.
Cancer Lett ; 598: 217085, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964733

RESUMO

LncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa. M6A modification is critical for FAM83H-AS1 RNA stability through the writer METTL3 and the readers IGF2BP2/IGFBP3. PTBP1-an RNA binding protein-is responsible for the FAM83H-AS1 function in CRC. T4 (1770-2440 nt) and T5 (2440-2743 nt) on exon 4 of FAM83H-AS1 provide a platform for PTBP1 RRM2 interactions. Our results demonstrated that m6A modification dysregulated the FAM83H-AS1 oncogenic role by phosphorylated PTBP1 on its RNA splicing effect. In patient-derived xenograft models, ASO-FAM83H-AS1 significantly suppressed the growth of gastrointestinal (GI) tumors, not only CRC but also GC and ESCC. The combination of ASO-FAM83H-AS1 and oxaliplatin/cisplatin significantly suppressed tumor growth compared with treatment with either agent alone. Notably, there was pathological complete response in all these three GI cancers. Our findings suggest that FAM83H-AS1 targeted therapy would benefit patients primarily receiving platinum-based therapy in GI cancers.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas , Metiltransferases , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Longo não Codificante , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Animais , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Metiltransferases/genética , Metiltransferases/metabolismo , Linhagem Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Estabilidade de RNA , Movimento Celular , Camundongos Endogâmicos BALB C , Ribonucleosídeo Difosfato Redutase , Proteínas de Ligação a RNA
9.
Cancer Lett ; 584: 216643, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246220

RESUMO

In the realm of cancer therapeutics and resistance, kinases play a crucial role, particularly in gastric cancer (GC). Our study focused on platinum-based chemotherapy resistance in GC, revealing a significant reduction in homeodomain-interacting protein kinase 3 (HIPK3) expression in platinum-resistant tumors through meticulous analysis of transcriptome datasets. In vitro and in vivo experiments demonstrated that HIPK3 knockdown enhanced tumor proliferation and metastasis, while upregulation had the opposite effect. We identified the myocyte enhancer factor 2C (MEF2C) as a transcriptional regulator of HIPK3 and uncovered HIPK3's role in downregulating the morphogenesis regulator microtubule-associated protein (MAP7) through ubiquitination. Phosphoproteome profiling revealed HIPK3's inhibitory effects on mTOR and Wnt pathways crucial in cell proliferation and movement. A combined treatment strategy involving oxaliplatin, rapamycin, and IWR1-1-endo effectively overcame platinum resistance induced by reduced HIPK3 expression. Monitoring HIPK3 levels could serve as a GC malignancy and platinum resistance indicator, with our proposed treatment strategy offering novel avenues for reversing resistance in gastric cancer.


Assuntos
Platina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Oxaliplatina/farmacologia , Progressão da Doença , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
10.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37405956

RESUMO

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/genética , Vírus da Hepatite B/genética , Camundongos Transgênicos , Carcinogênese , Proteínas de Ligação a DNA , Fatores de Transcrição
11.
Cancer Commun (Lond) ; 43(12): 1312-1325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837629

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) is a promising biomarker for predicting relapse in multiple solid cancers. However, the predictive value of ctDNA for disease recurrence remains indefinite in locoregional gastric cancer (GC). Here, we aimed to evaluate the predictive value of ctDNA in this context. METHODS: From 2016 to 2019, 100 patients with stage II/III resectable GC were recruited in this prospective cohort study (NCT02887612). Primary tumors were collected during surgical resection, and plasma samples were collected perioperatively and within 3 months after adjuvant chemotherapy (ACT). Somatic variants were captured via a targeted sequencing panel of 425 cancer-related genes. The plasma was defined as ctDNA-positive only if one or more variants detected in the plasma were presented in at least 2% of the primary tumors. RESULTS: Compared with ctDNA-negative patients, patients with positive postoperative ctDNA had moderately higher risk of recurrence [hazard ratio (HR) = 2.74, 95% confidence interval (CI) = 1.37-5.48; P = 0.003], while patients with positive post-ACT ctDNA showed remarkably higher risk (HR = 14.99, 95% CI = 3.08-72.96; P < 0.001). Multivariate analyses indicated that both postoperative and post-ACT ctDNA positivity were independent predictors of recurrence-free survival (RFS). Moreover, post-ACT ctDNA achieved better predictive performance (sensitivity, 77.8%; specificity, 90.6%) than both postoperative ctDNA and serial cancer antigen. A comprehensive model incorporating ctDNA for recurrence risk prediction showed a higher C-index (0.78; 95% CI = 0.71-0.84) than the model without ctDNA (0.71; 95% CI = 0.64-0.79; P = 0.009). CONCLUSIONS: Residual ctDNA after ACT effectively predicts high recurrence risk in stage II/III GC, and the combination of tissue-based and circulating tumor features could achieve better risk prediction.


Assuntos
DNA Tumoral Circulante , Neoplasias Gástricas , Humanos , Quimioterapia Adjuvante , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Estudos de Coortes
12.
Oncogene ; 41(12): 1780-1794, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132181

RESUMO

Non-small cell lung cancer (NSCLC) is a fatal disease, and its metastatic process is poorly understood. Although aberrant methylation is involved in tumor progression, the mechanisms underlying dynamic DNA methylation remain to be elucidated. It is significant to study the molecular mechanism of NSCLC metastasis and identify new biomarkers for NSCLC early diagnosis. Here, we performed MeDIP-seq and hMeDIP-seq analyses to detect the genes regulated by dynamic DNA methylation. Comparison of the 5mC and 5hmC sites revealed that the CD147 gene underwent active demethylation in NSCLC tissues compared with normal tissues, and this demethylation upregulated CD147 expression. Significantly high levels of CD147 expression and low levels of promoter methylation were observed in NSCLC tissues. Then, we identified the CD147 promoter as a target of KLF6, MeCP2, and DNMT3A. Treatment of cells with TGF-ß triggered active demethylation involving loss of KLF6/MeCP2/DNMT3A and recruitment of Sp1, Tet1, TDG, and SMAD2/3 transcription complexes. A dCas9-SunTag-DNMAT3A-sgCD147-targeted methylation system was constructed to reverse CD147 expression. The targeted methylation system downregulated CD147 expression and inhibited NSCLC proliferation and metastasis in vitro and in vivo. Accordingly, we used cfDNA to detect the levels of CD147 methylation in NSCLC tissues and found that the CD147 methylation levels exhibited an inverse relationship with tumor size, lymphatic metastasis, and TNM stage. In conclusion, this study clarified the mechanism of active demethylation of CD147 and suggested that the targeted methylation of CD147 could inhibit NSCLC invasion and metastasis, providing a highly promising therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Desmetilação , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
13.
Front Oncol ; 12: 794034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311105

RESUMO

Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.

14.
Cancer Lett ; 542: 215762, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35659513

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is invasive and heterogeneous, and existing therapies are sometimes unsuccessful. Chimeric antigen receptor (CAR) T cell therapy is a breakthrough tumor treatment method, particularly for B cell acute lymphoblastic leukemia. We found that CD147 was highly expressed in tumor T cells of T-ALL patients and T cell lymphoma. Therefore, CD147-CAR T cells that contain a humanized single-chain variable fragment targeting human CD147 and a second-generation CAR frame were constructed for treating T-ALL. CD147-CAR T cells were able to maintain a healthy proliferation rate, preserving a subset of CD62L+/CCR7+ memory T cells. CD147-CAR T cells showed a potent anti-tumor activity against human T-ALL cell line and T-ALL blasts, releasing high level of cytokines in the process. However, CD147-CAR T cells exhibited potential safety toward human normal cells and CD147-deficent cells. NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mice were used to establish a T-ALL xenograft model and CD147-CAR T cells conferred robust protection against T-ALL progression and significantly improved survival in mice. Overall, we found that CD147 is a potential antigen target of CAR T cell therapy for T-ALL.


Assuntos
Basigina , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Basigina/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T
15.
Yao Xue Xue Bao ; 46(11): 1385-9, 2011 Nov.
Artigo em Zh | MEDLINE | ID: mdl-22260035

RESUMO

Using the weight-average molecular weight 50 000 polylactic acid (PLA) as a carrier, and a certain proportion of erythromycin (EM) and prednisone acetate (PNA) to mixed prepare the compound erythromycin sustained release preparation (sustained-release tablets). Using ultraviolet spectrophotometry and high performance liquid chromatography (HPLC) to detect separately the release amount of EM and PNA in vitro medium. The sustained-release tablets release for about 21 days, the average content of EM is 99.7 mg/table, RSD = 0.82%; and the average content of PNA is 10.03 mg/table, RSD = 0.93%. Within 21 days, the cumulative releases of EM and PNA are 86.1% and 78.3%, respectively. The drug release is steady and slow after 5 days, the burst release phenomenon in early stage is more significant. The results showed that the sustained-release tablet preparation method is feasible, the release performance is good and the clinical efficacy is significant.


Assuntos
Eritromicina/administração & dosagem , Eritromicina/química , Prednisona/administração & dosagem , Prednisona/química , Cromatografia Líquida de Alta Pressão , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Portadores de Fármacos , Combinação de Medicamentos , Eritromicina/uso terapêutico , Humanos , Ácido Láctico/administração & dosagem , Poliésteres , Polímeros/administração & dosagem , Prednisona/uso terapêutico , Sinusite/tratamento farmacológico , Espectrofotometria Ultravioleta , Comprimidos
16.
Signal Transduct Target Ther ; 6(1): 64, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33589597

RESUMO

Genomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteína 28 com Motivo Tripartido/genética , Enzimas de Conjugação de Ubiquitina/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/genética , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Ubiquitinação/genética
17.
Cancer Res ; 81(10): 2636-2650, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782099

RESUMO

Long noncoding RNAs (lncRNA) are involved in tumorigenesis and drug resistance. However, the roles and underlying mechanisms of lncRNAs in colorectal cancer are still unknown. In this work, through transcriptomic profiling analysis of 21 paired tumor and normal samples, we identified a novel colorectal cancer-related lncRNA, MNX1-AS1. MNX1-AS1 expression was significantly upregulated in colorectal cancer and associated with poor prognosis. In vitro and in vivo gain- and loss-of-function experiments showed that MNX1-AS1 promotes the proliferation of colorectal cancer cells. MNX1-AS1 bound to and activated Y-box-binding protein 1 (YB1), a multifunctional RNA/DNA-binding protein, and prevented its ubiquitination and degradation. A marked overlap between genes that are differentially expressed in MNX1-AS1 knockdown cells and transcriptional targets of YB1 was observed. YB1 knockdown mimicked the loss of viability phenotype observed upon depletion of MNX1-AS1. In addition, MYC bound the promoter of the MNX1-AS1 locus and activated its transcription. In vivo experiments showed that ASO inhibited MNX1-AS1, which suppressed the proliferation of colorectal cancer cells in both cell-based and patient-derived xenograft models. Collectively, these findings suggest that the MYC-MNX1-AS1-YB1 axis might serve as a potential biomarker and therapeutic target in colorectal cancer. SIGNIFICANCE: This study highlights the discovery of a novel colorectal cancer biomarker and therapeutic target, MNX1-AS1, a long noncoding RNA that drives proliferation via a MYC/MNX1-AS1/YB1 signaling pathway. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2636/F1.large.jpg.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Antissenso/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box/química , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
18.
Pathol Res Pract ; 216(9): 153046, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32825931

RESUMO

As a member of the Rab GTPase family, Rab11a plays an important role in vesicle transport and tumor progression. However, it is not clear whether it can also be used as an oncoprotein in hepatocellular carcinoma (HCC). In this study, database and immunohistochemical analyses showed that Rab11a was highly expressed in HCC tissues, and associated with poor clinical prognosis. Rab11a overexpression promoted the proliferation, migration, invasion, and anti-apoptosis of human HCC cell lines, MHCC-97H and HCC-LM3, whereas the downregulation of Rab11a inhibited these biological tumor activities. Nude mice xenograft demonstrated that Rab11a had a positive effect on the growth of hepatocellular carcinoma cells in vivo. Further studies found that the PI3K/AKT pathway and matrix metalloproteinase 2 (MMP2) upregulation can be activated by over-expression of Rab11a. However, MMP2 upregulation induced by Rab11a can be inhibited by the PI3K/AKT pathway inhibitor, LY294002. Altogether, our study established for the first time that Rab11a can play a pro-cancer role in HCC, as a novel oncoprotein, by activating the PI3K/AKT pathway to regulate MMP2 expression.


Assuntos
Carcinoma Hepatocelular/patologia , Metaloproteinase 2 da Matriz/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Materials (Basel) ; 14(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396732

RESUMO

In this study, the high temperature erosion mechanisms and damage characteristics of a boronized coating have been systematically studied by employing an improved high-temperature accelerated erosion test bench and impact contact theory analyses. Within the scope of the experimental parameters, the erosion rate of the boronized coating under the same erosion conditions was observed to be only one half to one-twelfth of the erosion rate of the substrate. Furthermore, the boronized coating was noted to be less sensitive to the speed of the erosion particles than the plastic substrate, thus, indicating superior and more stable erosion resistance than the base material. The boronized coating exhibited typical brittle fracture characteristics under impact by the high-speed particles. When the particle impact normal stress exceeded the critical stress for crack propagation owing to the coating defects, the surface and subsurface layers of the coating initially formed horizontal and vertical micro-cracks, followed by their gradual expansion and intersection. After destabilization, the brittle coating material was peeled layer-by-layer from the surface of the test piece. At the same incident speed, as the particle size was increased from 65 µm to 226 µm and 336 µm, the size (width) of the erosion cracks on the coating surface increased from 1 µm to 30 µm and 100 µm respectively. Correspondingly, the erosion damage thickness of the coating was enhanced from 15 µm to 50 µm and 100 µm. In the case of the quartz sand particle size exceeding 300 µm, the dual-phase boronized coating did not provide effective protection to the substrate. Furthermore, based on the elastoplastic fracture theory, a prediction model for the erosion weight loss of the boronized coatings within the effective thickness range has been proposed in this study.

20.
Front Cell Dev Biol ; 8: 609090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490072

RESUMO

The persistence of macrophage-derived foam cells in the artery wall fuels atherosclerosis development. However, the mechanism of foam cell formation regulation remains elusive. We are committed to determining the role that CD147 might play in macrophage foam cell formation during atherosclerosis. In this study, we found that CD147 expression was primarily increased in mouse and human atherosclerotic lesions that were rich in macrophages and could be upregulated by ox-LDL. High-throughput compound screening indicated that ox-LDL-induced CD147 upregulation in macrophages was achieved through PI3K/Akt/mTOR signaling. Genetic deletion of macrophage CD147 protected against foam cell formation by impeding cholesterol uptake, probably through the scavenger receptor CD36. The opposite effect was observed in primary macrophages isolated from macrophage-specific CD147-overexpressing mice. Moreover, bioinformatics results indicated that CD147 suppression might exert an atheroprotective effect via various processes, such as cholesterol biosynthetic and metabolic processes, LDL and plasma lipoprotein clearance, and decreased platelet aggregation and collagen degradation. Our findings identify CD147 as a potential target for prevention and treatment of atherosclerosis in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa