Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198561

RESUMO

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

2.
Small ; : e2403732, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963164

RESUMO

The construction of novel structured Prussian blue analogs (PBAs) by chemical etching has attracted the most attention to PBA derivatives with outstanding performance. In this work, the unprecedented PBA orthogonal frustums are first prepared from nanocubes through a selective chemical etching approach using trisodium citrate as an etchant. The citrate ions can chelate with nickel species from the edges/corners of NiCo-PBA nanocubes and then disintegrate NiCo-PBAs resulting in the generation of NiCo-PBA orthogonal frustums. The derived CoNi2S4/Co0.91S composites still inherit the original orthogonal frustum structure and possess outstanding supercapacitor performance. This study develops a popularized method to construct novel structured PBAs and brings inspiration for designing PBA-based electrodes with advanced electrochemical performance.

3.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844957

RESUMO

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Quinase 2 de Adesão Focal , Neoplasias Pulmonares , Fator de Transcrição STAT3 , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Proliferação de Células/genética , Camundongos , Movimento Celular/genética , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C
4.
Cell Commun Signal ; 21(1): 311, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919739

RESUMO

BACKGROUND: Emerging evidence suggests the critical roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and tumor progression. However, the role of m6A in non-small cell lung cancer (NSCLC) is still unclear. This study aimed to explore the role of the m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of NSCLC. METHODS: A human m6A epitranscriptomic microarray analysis was used to identify downstream targets of FTO. Quantitative real-time PCR (qRT‒PCR) and western blotting were employed to evaluate the expression levels of FTO and FAP in NSCLC cell lines and tissues. Gain-of-function and loss-of-function assays were conducted in vivo and in vitro to assess the effects of FTO and FAP on NSCLC metastasis. M6A-RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), luciferase reporter assays, and RNA stability assays were used to explore the mechanism of FTO action. Co-immunoprecipitation (co-IP) assays were used to determine the mechanism of FAP in NSCLC metastasis. RESULTS: FTO was upregulated and predicted poor prognosis in patients with NSCLC. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. CONCLUSION: Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC. Video Abstract.


Emerging evidence suggests the crucial roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and progression. Nonetheless, the role of m6A in NSCLC remains unclear. The purpose of this study was to investigate the role of m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of non-small cell lung cancer (NSCLC). Results illustrated that FTO was upregulated and predicted poor prognosis in NSCLC patients. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , RNA , Transdução de Sinais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
5.
Cell Commun Signal ; 20(1): 16, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101055

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the most lethal tumour worldwide. Copine 1 (CPNE1) was identified as a novel oncogene in NSCLC in our previous study. However, its specific function and relative mechanisms remain poorly understood. METHODS: The biological role of CPNE1 and RACK1 in NSCLC was investigated using gene expression knockdown and overexpression, cell proliferation assays, clonogenic assays, and Transwell assays. The expression levels of CPNE1, RACK1 and other proteins were determined by western blot analysis. The relationship between CPNE1 and RACK1 was predicted and investigated by mass spectrometry analysis, immunofluorescence staining, and coimmunoprecipitation. NSCLC cells were treated with a combination of a MET inhibitor and gefitinib in vitro and in vivo. RESULTS: We found that CPNE1 facilitates tumorigenesis in NSCLC by interacting with RACK1, which further induces activation of MET signaling. CPNE1 overexpression promoted cell proliferation, migration, invasion and MET signaling in NSCLC cells, whereas CPNE1 knockdown produced the opposite effects. In addition, the suppression of the enhancing effect of CPNE1 overexpression on tumorigenesis and MET signaling by knockdown of RACK1 was verified. Moreover, compared to single-agent treatment, dual blockade of MET and EGFR resulted in enhanced reductions in the tumour volume and downstream signaling in vivo. CONCLUSIONS: Our findings show that CPNE1 promotes tumorigenesis by interacting with RACK1 and activating MET signaling. The combination of a MET inhibitor with an EGFR-TKI attenuated tumour growth more significantly than either single-drug treatment. These findings may provide new insights into the biological function of CPNE1 and the development of novel therapeutic strategies for NSCLC. Video Abstract.


Assuntos
Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Transdução de Sinais
6.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336265

RESUMO

The accurate and reliable monitoring of ventilation parameters is key to intelligent ventilation systems. In order to realize the visualization of airflow, it is essential to solve the airflow reconstruction problem using few sensors. In this study, a new concept called independent cut set that depends on the structure of the underlying graph is presented to determine the minimum number and location of sensors. We evaluated its effectiveness in a coal mine owned by Jinmei Corporation Limited (Jinmei Co., Ltd., Shanghai, China). Our results indicated that fewer than 30% of tunnels needed to have wind speed sensors set up to reconstruct the well-posed airflow of all the tunnels (>200 in some mines). The results showed that the algorithm was feasible. The reconstructed air volume of the ventilation network using this algorithm was the same as the actual air volume. The algorithm provides theoretical support for flow reconstruction.


Assuntos
Respiração , Ventilação , Ar Condicionado , Algoritmos , China
7.
Nano Lett ; 21(11): 4584-4591, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34037402

RESUMO

Recently, a two-dimensional Dion-Jacobson (DJ) perovskite (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) is emerging with remarkable Rashba effect and ferroelectricity. However, the origin of the giant Rashba splitting remains elusive and the current synthetic strategy via slow cooling is time- and power-consuming, hindering its future applications. Here, we report on an economical aqueous method to obtain (AMP)PbI4 crystals and clarify the origin of the giant Rashba effect by temperature- and polarization-dependent photoluminescence (PL) spectroscopy. The strong temperature-dependent PL helicity indicates the thermally assisted structural distortion as the main origin of the Rashba effect, suggesting that valley polarization still preserves at high temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect near the indirect bandgap. Our study not only optimizes the synthetic strategies of this DJ perovskite but also sheds light on its potential applications in room/high-temperature spintronics and valleytronics.

8.
Hum Mutat ; 42(10): 1254-1264, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245634

RESUMO

HLA-I LOH may facilitate immune evasion. However, large population studies on the prevalence of HLA-I LOH across different cancer types and in relation to mutational profiles are lacking, in particular, in the Chinese population. In this study, analysis was performed in 1504 advanced pan-cancer patients and 134 early-stage non-small-cell lung cancer patients using a 1021-gene panel. The consistency between the 1021-gene panel and whole-exome sequencing was evaluated in 45 samples, where concordant results were obtained in 95.6% (43/45) of the samples. Analytical results revealed that the prevalence of HLA-I LOH in tumor tissue presents considerable differences across cancer types. HLA-I LOH was relevant to genomic instability, reflected in higher tumor mutation burden level. HLA-I LOH occurs more frequently in MSS samples than in MSI-H samples. The alteration frequencies of p53 pathway, RTK/RAS pathway, Notch pathway, Hippo pathway, and Nrf2 pathway in HLA-I LOH group were significantly higher than that in HLA-I stable group (p < .0001, p < .0001, p = .032, p = .013, p = .003, respectively). In DNA damage response pathways, alterations in the checkpoint factor pathway and Fanconi anemia pathway are enriched in HLA-I LOH group (p < .0001, p = .023, respectively). Besides, HLA-I LOH was accompanied by higher mutation rates of several tumor suppressors, including TP53 and LRP1B. These results may shed light on follow-up tumor immunology research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , China/epidemiologia , Genômica , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Prevalência
9.
Small ; 17(5): e2005918, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432674

RESUMO

Excitons, bound pairs of electrons and holes, could act as an intermediary between electronic signal processing and optical transmission, thus speeding up the interconnection of photoelectric communication. However, up to date, exciton-based logic devices such as switches that work at room temperature are still lacking. This work presents a prototype of a room-temperature optoelectronic switch based on excitons in WSe2 monolayer. The emission intensity of WSe2 stacked on Au and SiO2 substrates exhibits completely opposite behaviors upon applying gate voltages. Such observation can be ascribed to different doping behaviors of WSe2 caused by charge-transfer and chemical-doping effect at WSe2 /Au and WSe2 /SiO2 interfaces, respectively, together with the charge-drift effect. These interesting features can be utilized for optoelectronic switching, confirmed by the cyclic PL switching test for a long time exceeding 4000 s. This study offers a universal and reliable approach for the fabrication of exciton-based optoelectronic switches, which would be essential in integrated nanophotonics.

10.
Respir Res ; 21(1): 227, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873299

RESUMO

BACKGROUND: AKT2 is highly expressed in many human cancers, including non-small cell lung cancer (NSCLC). Accumulating evidence has also revealed that AKT2 can promote NSCLC cell proliferation and metastasis. However, the involved mechanism remains unclear. Herein, our study mainly explored the function of AKT2 during cancer progression and uncovered a new post-transcriptional mechanism of AKT2 expression in lung adenocarcinoma (LUAD). METHODS: Quantitative real-time (qRT-PCR), western blot and immunohistochemistry (IHC) assays were performed to detect the expression of AKT2 and other proteins. Cell counting kit-8 (CCK-8), colony formation and EdU assays were performed to assess cell proliferation. Flow cytometry analysis was used to detect changes in the cell cycle and apoptosis. Transwell assays were used to evaluate cell migration and invasion. Additionally, a luciferase reporter assay and western blotting were employed to assess miR-124 targeting of AKT2. Xenograft mouse model was used to observe the role of miR-124/AKT2 axis on the occurrence and development of LUAD. RESULTS: We showed that AKT2 was highly expressed in NSCLC tissues and closely related to the poor prognosis of LUAD patients. Moreover, AKT2 affected LUAD cell proliferation, migration and invasion by regulating the cell cycle and promoting the occurrence of epithelial-mesenchymal transition (EMT) and the expression of matrix metalloproteinases (MMPs). In addition, we demonstrated that miR-124 overexpression downregulated AKT2 expression by binding to the 3'-untranslated region (3'- UTR) of AKT2 and thus inhibited the occurrence and development of LUAD in vivo and in vitro. CONCLUSIONS: Our results suggest that miR-124 overexpression can negatively regulate AKT2 and thus inhibit the progression of LUAD. Therefore, the miR-124/AKT2 axis may serve as a potential target for novel therapies for LUAD.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Progressão da Doença , Neoplasias Pulmonares/metabolismo , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Biotechnol Lett ; 42(8): 1479-1488, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144558

RESUMO

OBJECTIVE: Identification and characterization of a novel bacterial carbohydrate esterase (PaCes7) with application potential for lignocellulose and pesticide degradation. RESULTS: PaCes7 was identified from the lignocellulolytic bacterium, Pantoea ananatis Sd-1 as a new carbohydrate esterase. Recombinant PaCes7 heterologously expressed in Escherichia coli showed a clear preference for esters with short-chain fatty acids and exhibited maximum activity towards α-naphthol acetate at 37 °C and pH 7.5. Purified PaCes7 exhibited its catalytic activity under mesophilic conditions and retained more than 40% activity below 30 °C. It displayed a relatively wide pH stability from pH 6-11. Furthermore, the enzyme was strongly resistant to Mg2+, Pb2+, and Co2+ and activated by K+ and Ca2+. Both P. ananatis Sd-1 and PaCes7 could degrade the pesticide carbaryl. Additionally, PaCes7 was shown to work in combination with cellulase and/or xylanase in rice straw degradation. CONCLUSIONS: The data suggest that PaCes7 possesses promising biotechnological potential.


Assuntos
Proteínas de Bactérias , Esterases , Lignina/metabolismo , Pantoea/enzimologia , Praguicidas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbaril/metabolismo , Estabilidade Enzimática , Esterases/química , Esterases/genética , Esterases/metabolismo , Pantoea/genética
12.
Mol Carcinog ; 58(6): 1019-1032, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811684

RESUMO

Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co-receptor for multiple extracellular ligands and typically performs growth-promoting functions in cancer cells. Accumulating evidence indicates that NRP1 is upregulated, and may be an independent predictor of cancer relapse and poor survival, in many cancer types, including non-small cell lung cancer (NSCLC). Recent evidence suggests that NRP1 affects tumour cell viability via the epidermal growth factor receptor (EGFR) and Erb-B2 receptor tyrosine kinase 2 (ErbB2) signalling pathways in venous endothelial cells and in multiple cancer cells. In the present study, we aimed to evaluate the role of NRP1 in NSCLC tumourigenesis and to explore a new post-transcriptional mechanism of NRP1 regulation via a microRNA that mediates EGFR signalling regulation in lung carcinogenesis. The results showed that miR-338-3p is poorly expressed and NRP1 is overexpressed in NSCLC tissues relative to their levels in adjacent noncancerous tissues. Luciferase reporter assays, quantitative real-time reverse transcription PCR, and Western blot analyses showed that NRP1 is a direct target of miR-338-3p. Overexpression of miR-338-3p in NSCLC cell lines inhibited cell proliferation in vitro and in vivo. Moreover, cell migration and invasion were inhibited by miR-338-3p overexpression. These effects occurred via the EGF signalling pathway. Our data revealed a new post-transcriptional mechanism by which miR-338-3p directly targets NRP1; this mechanism plays a role in enhancing drug sensitivity in EGFR wild-type patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Neuropilina-1/genética , Regiões 3' não Traduzidas , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Transplante de Neoplasias , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima
13.
Respir Res ; 20(1): 225, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638991

RESUMO

BACKGROUND: Significant evidence has shown that the miRNA pathway is an important component in the downstream signaling cascades of TGF-ß1 pathway. Our previous study has indicated that miR-335-5p expression was significantly down-regulated and acted as a vital player in the metastasis of non-small cell lung cancer (NSCLC), however the underlying mechanism remained unclear. METHODS: The differential expression level of miR-335-5p and ROCK1 were determined by qRT-PCR and IHC analysis in human tissue samples with or without lymph node metastasis. Transwell assay was conducted to determine cell ability of migration and invasion. SiRNA interference, microRNA transfection and western blot analysis were utilized to clarify the underlying regulatory mechanism. RESULTS: We showed that down-regulated expression of miR-335-5p and up-regulated expression of ROCK1 in NSCLC tissues were associated with lymph node metastasis. Over-expresion of miR-335-5p significantly inhibited TGF-ß1-mediated NSCLC migration and invasion. Furthermore, luciferase reporter assays proved that miR-335-5p can bind to 3'-UTR of ROCK1 directly. Moreover, we confirmed that siRNA-mediated silencing of ROCK1 significantly diminished TGF-ß1-mediated EMT and migratory and invasive capabilities of A549 and SPC-A1 cells. CONCLUSION: This is the first time to report that miR-335-5p regulates ROCK1 and impairs its functions, thereby playing a key role in TGF-ß1-induced EMT and cell migration and invasion in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/metabolismo , MicroRNAs/biossíntese , Fator de Crescimento Transformador beta1/farmacologia , Quinases Associadas a rho/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Quinases Associadas a rho/genética
14.
Respir Res ; 20(1): 164, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331328

RESUMO

BACKGROUND: Approximately 30% of patients with epidermal growth factor receptor (EGFR)-activating mutations have no response to EGFR-tyrosine kinase inhibitors (TKIs) (primary resistance). However, little is known about the molecular mechanism involved in primary resistance to EGFR-TKIs in EGFR-mutant non-small cell lung cancer (NSCLC). Programmed death ligand-1 (PD-L1) plays important regulatory roles in intracellular functions and leads to acquired resistance to EGFR-TKIs in NSCLC. Here, we investigated the mechanistic role of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant NSCLC cells. METHODS: The expression levels of PD-L1 and the sensitivity to gefitinib in H1975, HCC827 and PC-9 cells were determined by quantitative real-time PCR analysis (qRT-PCR) and Cell Counting Kit-8 (CCK-8) assays, respectively. Molecular manipulations (silencing or overexpression) were performed to assess the effect of PD-L1 on sensitivity to gefitinib, and a mouse xenograft model was used for in vivo confirmation. Western blotting and qRT-PCR were used to analyse the expression of epithelial-mesenchymal transition (EMT) markers. The effect of PD-L1 on migratory and invasive abilities was evaluated using the Transwell assay and mice tail intravenous injection. RESULTS: Higher expression of PD-L1 was related to less sensitivity to gefitinib in EGFR-mutant NSCLC cell lines. The overexpression or knockdown of PD-L1 presented diametrical sensitivity to gefitinib in vitro and in vivo. Furthermore, the overexpression of PD-L1 led to primary resistance to gefitinib through the induction of EMT, which was dependent on the upregulation of Smad3 phosphorylation. Moreover, in the mouse model, the knockdown of PD-L1 inhibited transforming growth factor (TGF)-ß1-induced cell metastasis in vivo. CONCLUSION: PD-L1 contributes to primary resistance to EGFR-TKI in EGFR-mutant NSCLC cells, which may be mediated through the induction of EMT via the activation of the TGF-ß/Smad canonical signalling pathway.


Assuntos
Antígeno B7-H1/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/biossíntese , Neoplasias Pulmonares/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/efeitos dos fármacos , Mutação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Smad/genética , Fator de Crescimento Transformador beta/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Entropy (Basel) ; 21(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266926

RESUMO

Failure Mode and Effects Analysis (FMEA) has been regarded as an effective analysis approach to identify and rank the potential failure modes in many applications. However, how to determine the weights of team members appropriately, with the impact factor of domain experts' uncertainty in decision-making of FMEA, is still an open issue. In this paper, a new method to determine the weights of team members, which combines evidence theory, intuitionistic fuzzy sets (IFSs) and belief entropy, is proposed to analyze the failure modes. One of the advantages of the presented model is that the uncertainty of experts in the decision-making process is taken into consideration. The proposed method is data driven with objective and reasonable properties, which considers the risk of weights more completely. A numerical example is shown to illustrate the feasibility and availability of the proposed method.

16.
Mol Cancer ; 17(1): 140, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261900

RESUMO

BACKGROUND: TGF-ß promotes tumor invasion and metastasis through inducing epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) are recognized as functional non-coding RNAs involved in human cancers. However, whether and how circRNAs contribute to TGF-ß-induced EMT and metastasis in NSCLC remain vague. Here, we investigated the regulation and function of Circular RNA hsa_circ_0008305 (circPTK2) in TGF-ß-induced EMT and tumor metastasis, as well as a link between circPTK2 and transcriptional intermediary factor 1 γ (TIF1γ) in NSCLC. METHODS: Circular RNAs were determined by human circRNA Array analysis, real-time quantitative reverse transcriptase PCR and northern blot. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were employed to test the interaction between circPTK2 and miR-429/miR-200b-3p. Ectopic overexpression and siRNA-mediated knockdown of circPTK2, TGF-ß-induced EMT, Transwell migration and invasion in vitro, and in vivo experiment of metastasis were used to evaluate the function of circPTK2. Transcription and prognosis analyses were done in public databases. RESULTS: CircPTK2 and TIF1γ were significantly down-regulated in NSCLC cells undergoing EMT induced by TGF-ß. CircPTK2 overexpression augmented TIF1γ expression, inhibited TGF-ß-induced EMT and NSCLC cell invasion, whereas circPTK2 knockdown had the opposite effects. CircPTK2 functions as a sponge of miR-429/miR-200b-3p, and miR-429/miR-200b-3p promote TGF-ß-induced EMT and NSCLC cell invasion by targeting TIF1γ. CircPTK2 overexpression inhibited the invasion-promoting phenotype of endogenous miR-429/miR-200b-3p in NSCLC cells in response to TGF-ß. CircPTK2 overexpression significantly decreased the expression of Snail, an important downstream transcriptional activator of TGF-ß/Smad signaling. In an in vivo experiment of metastasis, circPTK2 overexpression suppressed NSCLC cell metastasis. Moreover, circPTK2 expression was dramatically down-regulated and positively correlated with TIF1γ expression in human NSCLC tissues. Especially, circPTK2 was significantly lower in metastatic NSCLC tissues than non-metastatic counterparts. CONCLUSION: Our findings show that circPTK2 (hsa_circ_0008305) inhibits TGF-ß-induced EMT and metastasis by controlling TIF1γ in NSCLC, revealing a novel mechanism by which circRNA regulates TGF-ß-induced EMT and tumor metastasis, and suggesting that circPTK2 overexpression could provide a therapeutic strategy for advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Quinase 1 de Adesão Focal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Metástase Neoplásica , Interferência de RNA , RNA Circular , Fator de Crescimento Transformador beta/farmacologia
17.
Cell Physiol Biochem ; 48(5): 2046-2060, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099455

RESUMO

BACKGROUND/AIMS: Circular RNAs (circRNAs) act as microRNA (miRNA) sponges that regulate gene expression and are involved in physiological and pathological processes. In this study, we evaluated the roles of circRNAs in the chemoresistance of non-small cell lung cancer (NSCLC) to taxol. METHODS: High-throughput circRNA microarrays were employed to investigate the circRNA profiles of parental A549 and taxol-resistant A549/Taxol cells. We predicted the miRNA targets of differentially expressed circRNAs via miRNA prediction software and then constructed a circRNA/miRNA network using Cytoscape. Bioinformatics analyses were performed to annotate dysregulated circRNAs in detail. RESULTS: We detected 2909 significantly upregulated and 8372 downregulated circRNAs in A549/Taxol cells compared with A549 cells. The circRNA/miRNA network displayed their interactions, suggesting that circRNAs exert biological effects by absorbing and sequestering miRNA molecules. Computational Gene Ontology and pathway analyses were used to determine the biological function and signaling pathways of host genes of dysregulated circRNAs and to identify potential molecular mechanisms prompting the resistance of NSCLC to taxol. CONCLUSION: This study focusing on circRNAs related to taxol resistance provides a basis for clarifying the development and progression of drug resistance and for identifying therapeutic targets in NSCLC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , RNA/metabolismo , Transcriptoma/efeitos dos fármacos , Células A549 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Biologia Computacional , Regulação para Baixo/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Paclitaxel/uso terapêutico , RNA Circular , Regulação para Cima/efeitos dos fármacos
18.
Biotechnol Lett ; 40(5): 871-880, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29605940

RESUMO

OBJECTIVE: To identify and characterize a novel bacterial pyranose 2-oxidase (P2Ox) and investigate its potential use in lignin degradation applications. RESULTS: A new bacterial P2Ox (PaP2Ox) enzyme was identified in the lignocellulolytic bacterium Pantoea ananatis Sd-1. The PaP2Ox open reading frame was cloned, and the encoded protein was heterologously expressed in an Escherichia coli expression system. Unlike another reported bacterial P2Ox enzyme, the purified PaP2Ox exhibits a homotetrameric spatial conformation that is similar to fungal P2Oxs, with each subunit having a molecular mass of 65 kDa. The recombinant PaP2Ox exhibits maximum activity at 50 °C and pH 6.5 with D-glucose as its preferred substrate. In addition, this enzyme was shown to work in combination with bacterial laccase in lignin degradation. CONCLUSIONS: The bacterial enzyme PaP2Ox has potential use in ligninolytic systems and shows promising value in industrial biotechnological applications.


Assuntos
Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Pantoea/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/química , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Temperatura Alta , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Lignina/química , Modelos Moleculares , Peso Molecular , Pantoea/genética , Conformação Proteica , Multimerização Proteica , Proteólise
19.
Mol Cancer ; 16(1): 34, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28158983

RESUMO

BACKGROUND: CD73 (ecto-5'-nucleotidase) is implicated in the development of many types of cancer. CD73 inhibitors are currently being tested in clinical trials for the treatment of cancer. Understanding the molecular and cellular actions of CD73 inhibitors is the key to improving this line of therapy. METHODS: Quantitative real-time PCR (qRT-PCR) was used to detect the expression of CD73 and miR-30a-5p; Western blot and immunohistochemical assays were used to investigate the levels of CD73 and other proteins. Flow cytometry was used to determine cell cycle stage and apoptosis. CCK-8 and clonogenic assays were used to investigate cell proliferation. Wound healing, migration and invasion assays were used to investigate the motility of cells. A lung carcinoma xenograft mouse model was used to investigate the in vivo effects of CD73 and miR-30a-5p. RESULTS: In the present study, we found that CD73 is overexpressed and miR-30a-5p is underexpressed in non-small cell lung cancer tissues compared with adjacent noncancerous. Further, we showed that CD73 is a direct target of miR-30a-5p by luciferase reporter assays, qRT-PCR and western blot analysis. We also found that overexpression of miR-30a-5p in these non-small cell lung cancer cell lines inhibited cell proliferation in vitro and in vivo. Moreover, the epithelial-to-mesenchymal phenotype was suppressed and cell migration and invasion were inhibited; these effects were brought about via the EGF signaling pathway. CONCLUSIONS: Our findings reveal a new post-transcriptional mechanism of CD73 regulation via miR-30a-5p and EGFR-related drug resistance in non-small cell lung cancer.


Assuntos
5'-Nucleotidase/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , 5'-Nucleotidase/metabolismo , Animais , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
20.
Int J Clin Oncol ; 22(6): 1026-1033, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28748356

RESUMO

BACKGROUND: Interferon-γ (IFN-γ) is conventionally regarded as an inflammatory cytokine that has a pivotal role in anti-infection and tumor immune surveillance. It has been used clinically to treat a variety of malignancies. However, increased evidence has suggested IFN-γ can act to induce tumor progression. The role of IFN-γ in regulating antitumor immunity appears to be complex and paradoxical. The mechanism underlying the dual aspects of IFN-γ function in antitumor immunity is not clear. METHODS: (1) Lung cancer cells (A549 cells) were cultured with pleural effusion or supernatant of tumor-associated macrophages (TAMs supernatant), and the expression levels of PD-L1 were detected by flow cytometer. The invasion capacity was measured in vitro using trans-well migration assays. (2) Pleural effusion mononuclear cells (PEMC) were separated by Ficoll Hypaque gradient. The expression of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and INF-γ in the tumor-associated macrophages was analyzed by flow cytometry. (3) A549 cells were stimulated with IL-6, IL-10, TNF-α, or IFN-γ and then the expression levels were detected by flow cytometry. (4) The expression levels of phospho-ERK (p-ERK), phospho-AKT (p-AKT), and phospho-Sat3 (p-Stat3) were analyzed with Western blot after stimulation with IFN-γ. (5) Cotreatment of the A549 cells with MAPK/ERK-specific inhibitor PD98059, PI3K/AKT-specific inhibitor LY294002, or JAK/STAT3-specific inhibitor AG490, respectively, blocked IFN-γ-induced PD-L1 expression, and then PD-L1 expression was detected by flow cytometry. RESULTS: We demonstrated that TAMs could induce the expression of PD-L1 by the secretion of IFN-γ through the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in A549 cells. Furthermore, the signal pathway blockers LY294002 or AG490 could block the induced expression of PD-L1 by IFN-γ. CONCLUSIONS: IFN-γ was not always successful as an antitumor agent. It also can promote tumor cells to evade immune surveillance. Researchers should be cautious in using IFN-γ as a therapeutic agent for cancer treatment.


Assuntos
Antígeno B7-H1/metabolismo , Interferon gama/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Linhagem Celular Tumoral , Flavonoides , Humanos , Interferon gama/farmacologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa