Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; 20(24): e2310317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155499

RESUMO

Metal-free carbon-based materials are one of the most promising electrocatalysts toward 2-electron oxygen reduction reaction (2e-ORR) for on-site production of hydrogen peroxide (H2O2), which however suffer from uncontrollable carbonizations and inferior 2e-ORR selectivity. To this end, a polydopamine (PDA)-modified carbon catalyst with a dipole-dipole enhancement is developed via a calcination-free method. The H2O2 yield rate outstandingly reaches 1.8 mol gcat -1 h-1 with high faradaic efficiency of above 95% under a wide potential range of 0.4-0.7 VRHE, overwhelming most of carbon electrocatalysts. Meanwhile, within a lab-made flow cell, the synthesized ORR electrode features an exceptional stability for over 250 h, achieved a pure H2O2 production efficacy of 306 g kWh-1. By virtue of its industrial-level capabilities, the established flow cell manages to perform a rapid pulp bleaching within 30 min. The superior performance and enhanced selectivity of 2e-ORR is experimentally revealed and attributed to the electronic reconfiguration on defective carbon sites induced by non-covalent dipole-dipole influence between PDA and carbon, thereby prohibiting the cleavage of O-O in OOH intermediates. This proposed strategy of dipole-dipole effects is universally applicable over 1D carbon nanotubes and 2D graphene, providing a practical route to design 2e-ORR catalysts.

2.
Biotechnol Bioeng ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877732

RESUMO

Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.

3.
Aesthetic Plast Surg ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528127

RESUMO

INTRODUCTION: Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research. MATERIALS AND METHODS: We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB-GD). HB-GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young's modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation. RESULTS: With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB-5GD)-158 ± 3.2 kPa (HB-20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB-GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures. CONCLUSION: The HB-10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

4.
Biotechnol Bioeng ; 120(10): 2853-2864, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227037

RESUMO

Currently, there is a lack of suitable models for in-vitro studies of malignant melanoma and traditional single cell culture models no longer reproduce tumor structure and physiological complexity well. The tumor microenvironment is closely related to carcinogenesis and it is particularly important to understand how tumor cells interact and communicate with surrounding nonmalignant cells. Three-dimensional (3D) in vitro multicellular culture models can better simulate the tumor microenvironment due to their excellent physicochemical properties. In this study, 3D composite hydrogel scaffolds were prepared from gelatin methacrylate and polyethylene glycol diacrylate hydrogels by 3D printing and light curing techniques, and 3D multicellular in vitro tumor culture models were established by inoculating human melanoma cells (A375) and human fibroblasts cells on them. The cell proliferation, migration, invasion, and drug resistance of the 3D multicellular in vitro model was evaluated. Compared with the single-cell model, the cells in the multicellular model had higher proliferation activity and migration ability, and were easy to form dense structures. Several tumor cell markers, such as matrix metalloproteinase-9 (MMP-9), MMP-2, and vascular endothelial growth factor, were highly expressed in the multicellular culture model, which were more favorable for tumor development. In addition, higher cell survival rate was observed after exposure to luteolin. The anticancer drug resistance result of the malignant melanoma cells in the 3D bioprinted construct demonstrated physiological properties, suggesting the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.


Assuntos
Bioimpressão , Melanoma , Humanos , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células , Técnicas de Cultura de Células , Impressão Tridimensional , Hidrogéis/química , Bioimpressão/métodos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Microambiente Tumoral
5.
EMBO Rep ; 22(2): e50967, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33372411

RESUMO

Lysine succinylation (Ksucc) is an evolutionarily conserved and widespread post-translational modification. Histone acetyltransferase 1 (HAT1) is a type B histone acetyltransferase, regulating the acetylation of both histone and non-histone proteins. However, the role of HAT1 in succinylation modulation remains unclear. Here, we employ a quantitative proteomics approach to study succinylation in HepG2 cancer cells and find that HAT1 modulates lysine succinylation on various proteins including histones and non-histones. HAT1 succinylates histone H3 on K122, contributing to epigenetic regulation and gene expression in cancer cells. Moreover, HAT1 catalyzes the succinylation of PGAM1 on K99, resulting in its increased enzymatic activity and the stimulation of glycolytic flux in cancer cells. Clinically, HAT1 is significantly elevated in liver cancer, pancreatic cancer, and cholangiocarcinoma tissues. Functionally, HAT1 succinyltransferase activity and the succinylation of PGAM1 by HAT1 play critical roles in promoting tumor progression in vitro and in vivo. Thus, we conclude that HAT1 is a succinyltransferase for histones and non-histones in tumorigenesis.


Assuntos
Epigênese Genética , Histonas , Acetilação , Carcinogênese/genética , Células Hep G2 , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos
6.
BMC Med Educ ; 23(1): 271, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081506

RESUMO

BACKGROUND: English as a Media of Instruction (EMI) teacher development project is based upon the framework for teacher Continuing Professional Development (CPD) and aims to effectively improve both the confidence and overall capacity of EMI lecturers. Kunming Medical University(KMU) conducted the EMI training project to improve teachers' competence for MBBS education. This study aimed to assess teachers' changes following the implementation of this training project, via the Kirkpatrick evaluation model. METHODS: A total of trainees (n = 84) were invited as the research objects. The effects of the EMI training project implemented in KMU were evaluated in terms of the reaction, learning, and behavior dimensions based on the Kirkpatrick model. The self-administered online anonymous questionnaires and observations of participants' EMI lectures were administered to all participants to collect the data. Furthermore, to understand participants' perceptions of the management and trainers of the training project, some open-ended questions were required to answer. RESULTS: Based on 1-3 level of the Kirkpatrick model, all participants were highly satisfied with the EMI training implementation on the reaction level, and expressed positive comments about the management of the training and trainers. On the learning level, participants' scores on awareness of EMI teaching techniques increased significantly(t = 7.122, P < 0.001)with the training process. Concerning the behavior level, the participant's confidence as an EMI instructor increased dramatically at end of the whole training(p < 0.001). Moreover, trainees had applied some EMI skills in class and would like to make some commitment to implement learner-centered learning, to do more practice on EMI techniques. CONCLUSION: The findings of this study confirm that EMI training has an effective impact on the competence and confidence of participants as EMI instructors at levels 1-3 of the Kirkpatrick evaluation model. This training may be a potentially beneficial effect on the teaching quality of MBBS education.


Assuntos
Currículo , Aprendizagem , Humanos , Escolaridade , Competência Clínica , Inquéritos e Questionários
7.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372983

RESUMO

Periodontitis is a chronic infectious disease characterized by the destruction of connective tissue and alveolar bone that eventually leads to tooth loss. Ferroptosis is an iron-dependent regulated cell death and is involved in ligature-induced periodontitis in vivo. Studies have demonstrated that curcumin has a potential therapeutic effect on periodontitis, but the mechanism is still unclear. The purpose of this study was to investigate the protective effects of curcumin on alleviating ferroptosis in periodontitis. Ligature-induced periodontal-diseased mice were used to detect the protective effect of curcumin. The level of superoxide dismutase (SOD), malondialdehyde (MDA) and total glutathione (GSH) in gingiva and alveolar bone were assayed. Furthermore, the mRNA expression levels of acsl4, slc7a11, gpx4 and tfr1 were measured using qPCR and the protein expression of ACSL4, SLC7A11, GPX4 and TfR1 were investigated by Western blot and immunocytochemistry (IHC). Curcumin reduced the level of MDA and increased the level of GSH. Additionally, curcumin was proven to significantly increase the expression levels of SLC7A11 and GPX4 and inhibit the expression of ACSL4 and TfR1. In conclusion, curcumin plays a protective role by inhibiting ferroptosis in ligature-induced periodontal-diseased mice.


Assuntos
Curcumina , Ferroptose , Periodontite , Morte Celular Regulada , Animais , Camundongos , Curcumina/farmacologia , Bioensaio , Glutationa , Periodontite/tratamento farmacológico , Periodontite/etiologia
8.
Macromol Rapid Commun ; 43(22): e2200190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35510577

RESUMO

In organic solar cells, interfacial materials play essential roles in charge extraction, transportation, and collection. Currently, highly efficient and thickness-insensitive interfacial materials are urgently needed in printable large area module devices. Herein, water/alcohol-soluble conjugated polyelectrolyte PFNBT-Br, with medium bandgap based on benzothiadiazole, are doped by two alkali metal sodium salts, NaH2 PO2 , Na2 C2 O4 with different counter anions, to pursue high efficiency and thickness-insensitive electron-transport layers. Results show that the doping of electron-transport material can effectively promote the performance of the devices. Moreover, electron-transport layers doped by these salts with different counter anions show different behaviors in performances. Among which, the salt with oxalate anion C2 O4 2- (also named Ox2- ) shows much better device performance than the salt with hypophosphite anion (H2 PO2 - ), especially under the thick film condition (e.g., 50 nm). The greatly enhanced performances of interfacial material doped by Ox2- are due to reduced series resistance between the active layer material and the electrode, reduced dark-current, improved charge transport, and extraction efficiency, and decreased charge recombination for the devices at thick-film condition. These results demonstrated that n-doping could be a great potential strategy for making thickness-insensitive interfacial layers, besides, the performances can be further improved by carefully selecting salts.

9.
Small ; 17(29): e2100746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34142434

RESUMO

Developing high-loading cathodes with superior electrochemical performance is desirable but challenging in aqueous zinc-ion batteries (ZIBs) for commercialization. Advanced 3D printing of cellular and hierarchical porous cathodes with high mass loading for superior ZIBs is explored here. To obtain a high-performance 3D printable ink, a composite material of iron vanadate and reduced holey graphene oxide is synthesized as the ink component. A cellular cathode with hierarchical porous architecture for aqueous ZIBs is then designed and fabricated by 3D printing for the first time. The unique structures of 3D printed composite cathode provide interpenetrating transmission paths as well as channels for electrons and ions. 3D printed cathodes with high mass loading over 10 mg cm-2 exhibit a high specific capacity of 344.8 mAh g-1 at 0.1 A g-1 and deliver outstanding cycling stability over 650 cycles at 2 A g-1 . In addition, the printing strategy enables the ease increase in mass loading up to 24.4 mg cm-2 , where a remarkably high areal capacity of 7.04 mAh cm-2 is reached. The superior electrochemical performance paves the new way to design the state-of-the-art cathodes for ZIBs.


Assuntos
Fontes de Energia Elétrica , Zinco , Eletrodos , Íons , Impressão Tridimensional
10.
Small ; 17(6): e2002866, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470520

RESUMO

All-solid-state lithium batteries have received extensive attention due to their high safety and promising energy density and are considered as the next-generation electrochemical energy storage system. However, exploring solid-state electrolytes in customized geometries without sacrificing the ionic transport is significant yet challenging. Herein, various 3D printable Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP)-based inks are developed to construct ceramic and hybrid solid-state electrolytes with arbitrary shapes as well as high conductivities. The obtained inks show suitable rheological behaviors and can be successfully extruded into solid-state electrolytes using the direct ink writing (DIW) method. As-printed free-standing LATP ceramic solid-state electrolytes deliver high ionic conductivity up to 4.24 × 10-4  S cm-1 and different shapes such as "L", "T," and "+" can be easily realized without sacrificing high ionic transport properties. Moreover, using this printing method, LATP-based hybrid solid-state electrolytes can be directly printed on LiFePO4 cathodes for solid-state lithium batteries, where a high discharge capacity of 150 mAh g-1 at 0.5 C is obtained. The DIW strategy for solid-state electrolytes demonstrates a new way toward advanced solid-state energy storage with the high ionic transport and customized manufacturing ability.

11.
Microb Cell Fact ; 20(1): 102, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001083

RESUMO

As treatment of Staphylococcus aureus (S. aureus) osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent for ß-lactam antibiotics against S. aureus.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Osteomielite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bacillus subtilis/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultura/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Osteomielite/tratamento farmacológico , Percepção de Quorum , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
12.
Biol Blood Marrow Transplant ; 26(2): 285-291, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494229

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment for patients with myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). However, post-HSCT relapse remains a major cause of treatment failure. Here we assessed the efficacy of a new conditioning regimen comprising decitabine (Dec), busulfan (Bu), cyclophosphamide (Cy), fludarabine (Flu), and cytarabine (Ara-c) for allo-HSCT in patients with MDS and MDS/MPN. A total of 48 patients were enrolled, including 44 with MDS and 4 with chronic myelomonocytic leukemia (CMML). Patients received Dec 20 mg/m2/day on days -9 to -5, combined with a Bu/Cy/Flu/Ara-c-modified preparative regimen. At a median follow-up of 522 days (range, 15 to 1313 days), the overall survival (OS) was 86%, relapse incidence was 12%, and nonrelapse mortality was 12%. The incidence of severe acute (grade III-IV) graft-versus-host disease (GVHD) was 23% and that of chronic GVHD was 15%. At 2 years, OS was 74% and 86%, respectively for high-risk and very-high-risk patients with MDS. Survival was promising in patients with poor-risk gene mutations, such as TP53 and ASXL1 (88%), and in those with ≥3 gene mutations (79%). Results of immunomonitoring studies revealed that proper natural killer cells made essential contributions to these favorable clinical outcomes. Overall, this new regimen was associated with a low relapse rate, low incidence and severity of GVHD, and satisfactory survival in allo-HSCT recipients with MDS and MDS/MPN.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Bussulfano/uso terapêutico , Decitabina/uso terapêutico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Condicionamento Pré-Transplante , Transplante Homólogo
13.
Biochem Biophys Res Commun ; 527(1): 76-82, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446394

RESUMO

Hepatitis B virus (HBV) is a major risk factor for liver diseases, in which HBV covalently closed circular DNA (cccDNA), as the genomic form that templates viral transcription, plays crucial roles in sustaining viral persistence. Clinically, the excessive ethanol intake accelerates the progression of liver diseases with HBV infection. Here, we supposed that ethanol might trigger HBV cccDNA in the liver. Interestingly, we observed that the ethanol remarkably elevated the levels of HBeAg, HBsAg, HBV DNA and cccDNA in HBV-expressing hepatoma cells. Mechanically, the ethanol increased the levels of HBx and MSL2 in vivo and in HBV-expressing HepG2 cells, but not in HBV-free HepG2 cells. Moreover, the down-regulation of MSL2 by small interference RNA could block the ethanol-promoted HBV cccDNA in HepG2.2.15 cells. As a commonly administered treatment for HBV, the effect of IFNα on ethanol-triggered HBV cccDNA remains poorly understood. Strikingly, we showed that the treatment with IFN-α2b inhibited the ethanol-promoted cccDNA through depressing MSL2 in the cells. Thus, we conclude that IFN-α2b inhibits the ethanol-enriched HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx. Our finding provides new insights into the mechanism by which IFN-α2b inhibits ethanol-enhanced HBV cccDNA. Therapeutically, IFNα may contribute to the cccDNA induced by ethanol in liver.


Assuntos
DNA Circular/genética , Etanol/farmacologia , Vírus da Hepatite B/genética , Hepatite B/complicações , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Consumo de Bebidas Alcoólicas/epidemiologia , DNA Viral/genética , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/genética , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/análise , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/análise , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Interferon alfa-2 , Fígado/metabolismo , Fígado/virologia , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética , Replicação Viral/efeitos dos fármacos
14.
Sci Data ; 11(1): 331, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570520

RESUMO

Identifying road surface types (paved or unpaved) can ensure road vehicle safety, reduce energy consumption, and promote economic development. Existing studies identified road surface types by using sensors mounted on mobile devices and high-resolution satellite images that are not openly accessible, which makes it difficult to apply them to large-scale (e.g., national or regional) study areas. Addressing this issue, this study developed a dataset of road surface types (paved and unpaved) for the national road network of Kenya, containing 1,267,818 road segments classified as paved or unpaved. To accomplish this, this study proposes a method that integrates crowdsourced geographic data (OpenStreetMap) and Google satellite imagery to identify road surface types. The accuracy, recall, and F1 score of the method were all above 0.94, validating the effectiveness of the method. The data sources of the method are freely available, and the method may be applied to other countries and regions. The dataset developed based on the method can provide data support and decision support for local governments to improve road infrastructure.

15.
Int J Biol Macromol ; 262(Pt 1): 130075, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340924

RESUMO

Skin tissue engineering faces challenges due to the absence of vascular architecture, impeding the development of permanent skin replacements. To address this, a heparin-functionalized 3D-printed bioink (GH/HepMA) was formulated to enable sustained delivery of vascular endothelial growth factor (VEGF), comprising 0.3 % (w/v) hyaluronic acid (HA), 10 % (w/v) gelatin methacrylate (GelMA), and 0.5 % (w/v) heparin methacrylate (HepMA). The bioink was then used to print dermal constructs with angiogenic functions, including fibroblast networks and human umbilical vein endothelial cell (HUVEC) networks. GH/HepMA, with its covalently cross-linked structure, exhibits enhanced mechanical properties and heparin stability, allowing for a 21-day sustained delivery of VEGF. Cytocompatibility experiments showed that the GH/HepMA bioink supported fibroblast proliferation and promoted collagen I production. With VEGF present, the GH/HepMA bioink promoted HUVEC proliferation, migration, as well as the formation of a richer capillary-like network. Furthermore, HA within the GH/HepMA bioink enhanced rheological properties and printability. Additionally, 3D-bioprinted dermal constructs showed significant deposition of collagen I and III and mature stable capillary-like structures along the axial direction. In summary, this study offers a promising approach for constructing biomimetic multicellular skin substitutes with angiogenesis-induced functions.


Assuntos
Bioimpressão , Fator A de Crescimento do Endotélio Vascular , Humanos , Heparina , Engenharia Tecidual , Gelatina/química , Colágeno , Metacrilatos/química , Impressão Tridimensional , Alicerces Teciduais/química
16.
Int J Nanomedicine ; 19: 2507-2528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495752

RESUMO

Background: Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods: Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results: This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion: Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanotecnologia , Autofagia
17.
Biochem Pharmacol ; 222: 116117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461903

RESUMO

Oxaliplatin (OXA) is a platinum-based chemotherapeutic agent with promising applications in the treatment of various malignancies, particularly colorectal cancer (CRC). However, the management of OXA resistance remains an ongoing obstacle in CRC therapy. This study aims to comprehensively investigate the immune landscape, targeted therapeutic biomarkers, and mechanisms that influence OXA resistance in CRC. Our results demonstrated that our OXA- resistant CRC prognostic model not only provides risk assessment for patients but also reflects the immune landscape of patients. Additionally, we identified prostate transmembrane protein, androgen-induced1 (PMEPA1) as a promising molecular targeted therapeutic biomarker for patients with OXA-resistant CRC. The mechanism of PMEPA1 may involve cell adhesion, pathways in cancer, and the TGF-ß signaling pathway. Furthermore, analysis of CRC clinical samples indicated that patients resistant to OXA exhibited elevated serum levels of TGF-ß1, increased expression of PMEPA1 in tumors, a lower proportion of CD8+ T cell positivity, and a higher proportion of M0 macrophage positivity, in comparison to OXA-sensitive individuals. Cellular experiments indicated that selective silencing of PMEPA1, alone or in combination with OXA, inhibited proliferation and metastasis in OXA-resistant CRC cells, HCT116R. Animal experiments further confirmed that PMEPA1 silencing suppressed subcutaneous graft tumor growth and liver metastasis in mice bearing HCT116R and synergistically enhanced the efficacy of OXA. These data highlight the potential of leveraging the therapeutic biomarker PMEPA1, CD8+ T cells, and M0 macrophages as innovative targets for effectively addressing the challenges associated with OXA resistance. Our findings hold promising implications for further clinical advancements in this field.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Masculino , Humanos , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
18.
Blood Sci ; 6(2): e00187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721470

RESUMO

Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors (MkPs) are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) mainly in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in adult mice. Single-cell colony assay and single-cell transplantation showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average 8 megakaryocytes per colony) than did previously reported MkPs. Single-cell RNA sequencing supported that HSCs give rise to MkPs through MgPs along a Mk differentiation pathway. Single-cell reverse transcription polymerase chain reaction (RT-PCR) analysis showed that MgPs expressed Mk-related genes, but were transcriptionally heterogenous. Clonal culture of HSCs suggested that MgPs are not direct progeny of HSCs. We propose a differentiation model in which HSCs give rise to MgPs which then give rise to MkPs, supporting a classic model in which Mk-lineage commitment takes place at a late stage of differentiation.

19.
Stem Cell Res Ther ; 15(1): 187, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937829

RESUMO

Due to the advanced studies on stem cells in developmental biology, the roles of stem cells in the body and their phenotypes in related diseases have not been covered clearly. Meanwhile, with the intensive research on the mechanisms of stem cells in regulating various diseases, stem cell therapy is increasingly being attention because of its effectiveness and safety. As one of the most widely used stem cell in stem cell therapies, hematopoietic stem cell transplantation shows huge advantage in treatment of leukemia and other blood-malignant diseases. Besides, due to the effect of anti-inflammatory and immunomodulatory, mesenchymal stem cells could be a potential therapeutic strategy for variety infectious diseases. In this review, we summarized the effects of Staphylococcus aureus (S. aureus) and its components on different types of adult stem cells and their downstream signaling pathways. Also, we reviewed the roles of different kinds of stem cells in various disease models caused by S. aureus, providing new insights for applying stem cell therapy to treat infectious diseases.


Assuntos
Staphylococcus aureus , Humanos , Animais , Inflamação/terapia , Infecções Estafilocócicas/terapia , Transdução de Sinais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
20.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301022

RESUMO

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


Assuntos
Clivagem do DNA , Endonucleases , RNA Catalítico , Animais , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Hidrólise , Íntrons , Conformação de Ácido Nucleico , Splicing de RNA , RNA Catalítico/química , RNA Catalítico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa