Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430621

RESUMO

This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Humanos , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-27/genética , Interleucina-27/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , SARS-CoV-2/genética
2.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012323

RESUMO

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/imunologia , Quimiocina CXCL10 , Quimiocinas/sangue , Humanos , Interleucina-8 , Plasma
3.
Diagnostics (Basel) ; 14(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001298

RESUMO

Recent studies have demonstrated the relationship between vitamin D deficiency, infection severity and mortality from COVID-19. This study aimed to analyze the vitamin D metabolites and cytokine expression levels of COVID-19 patients who were hospitalized with bolus cholecalciferol supplementation. MATERIALS AND METHODS: This study represents the next stage of the open-label randomized pilot conducted by the Almazov National Medical Research Centre. A total of 44 hospitalized patients, comparable in demographic, clinical, laboratory and instrumental baseline characteristics, with moderate/severe COVID-19 were included. All patients had similar doses of concomitant corticosteroid therapy. Twenty-two patients received 50,000 IU cholecalciferol on the first and eighth days of hospitalization. The serum 25(OH)D, 1,25(OH)2D and 28 plasma cytokines were estimated for each group initially and on the ninth day of hospitalization. RESULTS: Initially, there were no differences in the 1,25(OH)2D and cytokine levels in patients with vitamin D deficiency and normal 25(OH)D. Bolus cholecalciferol therapy at a total dose of 100,000 IU led to an increase in 25(OH)D levels in hospitalized patients with COVID-19, while the levels of the active metabolite (1,25(OH)2D) did not show significant differences between the groups or in its increased level over time, regardless of cholecalciferol supplementation. Furthermore, cholecalciferol supplementation at a total dose of 100,000 IU did not affect the majority of the cytokines estimated on the ninth day of hospitalization, except for the pro-inflammatory marker IL-1b, the concentration of which was lower in the group of patients without vitamin D supplementation. CONCLUSIONS: The 25(OH)D level was positively associated with an anti-inflammatory immune response, but cholecalciferol supplementation at a total dose of 100,000 IU did not affect the active-form vitamin D or cytokine expression levels. This fact may be explained by the impact of corticosteroid therapy, and it requires further investigation in a post-COVID-19 context.

4.
PLoS One ; 18(2): e0278083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758022

RESUMO

Transcriptomic analysis conducted by us previously revealed upregulation of genes involved in low-density lipoprotein particle receptor (LDLR) activity pathway in lethal COVID-19 caused by SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). Last data suggested the possible role of extracellular vesicles in COVID-19 pathogenesis. The aim of the present study was to retrospectively evaluate parameters of cholesterol metabolism and newly identified EVs, exomeres, as possible predictors of fatal outcome of COVID-19 patients infected by the Alpha and the Delta variants of SARS-CoV-2 virus. Blood from 67 patients with severe COVID-19 were collected at the time of admission to the intensive care unit (ICU) and 7 days after admission to the ICU. After 30 days patients were divided into two subgroups according to outcome-34 non-survivors and 33 survivors. This study demonstrated that plasma low- and high-density lipoprotein cholesterol levels (LDL-C and HDL-C) were decreased in non-survivors compared to controls at the time of admission to the ICU. The conjoint fraction of exomeres and LDL particles measured by dynamic light scattering (DLS) was decreased in non-survivors infected by the Alpha and the Delta variants compared to survivors at the time of admission to the ICU. We first showed that reduction of exomeres fraction may be critical in fatal outcome of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , LDL-Colesterol , Estudos Retrospectivos
5.
Viruses ; 14(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632683

RESUMO

IgG is the most prominent marker of post-COVID-19 immunity. Not only does this subtype mark the late stages of infection, but it also stays in the body for a timespan of at least 6 months. However, different IgG subclasses have different properties, and their roles in specific anti-COVID-19 responses have yet to be determined. We assessed the concentrations of IgG1, IgG2, IgG3, and IgG4 against different SARS-CoV-2 antigens (N protein, S protein RBD) using a specifically designed method and samples from 348 COVID-19 patients. We noted a statistically significant association between severity of COVID-19 infection and IgG concentrations (both total and subclasses). When assessing anti-N protein and anti-RBD IgG subclasses, we noted the importance of IgG3 as a subclass. Since it is often associated with early antiviral response, we presumed that the IgG3 subclass is the first high-affinity IgG antibody to be produced during COVID-19 infection.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunoglobulina G , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa