Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Am Chem Soc ; 146(28): 19317-19326, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976816

RESUMO

Cage catalysis continues to create significant interest, yet catalyst function remains poorly understood. Herein, we report mechanistic insights into coordination-cage-catalyzed Michael addition using kinetic and computational methods. The study has been enabled by the detection of identifiable catalyst intermediates, which allow the evolution of different cage species to be monitored and modeled alongside reactants and products. The investigations show that the overall acceleration results from two distinct effects. First, the cage reaction shows a thousand-fold increase in the rate constant for the turnover-limiting C-C bond-forming step compared to a reference state. Computational modeling and experimental analysis of activation parameters indicate that this stems from a significant reduction in entropy, suggesting substrate coencapsulation. Second, the cage markedly acidifies the bound pronucleophile, shifting this equilibrium by up to 6 orders of magnitude. The combination of these two factors results in accelerations up to 109 relative to bulk-phase reference reactions. We also show that the catalyst can fundamentally alter the reaction mechanism, leading to intermediates and products that are not observable outside of the cage. Collectively, the results show that cage catalysis can proceed with very high activity and unique selectivity by harnessing a series of individually weak noncovalent interactions.

2.
J Am Chem Soc ; 146(19): 13558-13570, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712910

RESUMO

The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser-Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C-H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.

3.
J Am Chem Soc ; 145(32): 18126-18140, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526380

RESUMO

Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n-π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.

4.
Acc Chem Res ; 55(9): 1324-1336, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435655

RESUMO

Reagent instability reduces the efficiency of chemical processes, and while much effort is devoted to reaction optimization, less attention is paid to the mechanistic causes of reagent decomposition. Indeed, the response is often to simply use an excess of the reagent. Two reaction classes with ubiquitous examples of this are the Suzuki-Miyaura cross-coupling of boronic acids/esters and the transfer of CF3 or CF2 from the Ruppert-Prakash reagent, TMSCF3. This Account describes some of the overarching features of our mechanistic investigations into their decomposition. In the first section we summarize how specific examples of (hetero)arylboronic acids can decompose via aqueous protodeboronation processes: Ar-B(OH)2 + H2O → ArH + B(OH)3. Key to the analysis was the development of a kinetic model in which pH controls boron speciation and heterocycle protonation states. This method revealed six different protodeboronation pathways, including self-catalysis when the pH is close to the pKa of the boronic acid, and protodeboronation via a transient aryl anionoid pathway for highly electron-deficient arenes. The degree of "protection" of boronic acids by diol-esterification is shown to be very dependent on the diol identity, with six-membered ring esters resulting in faster protodeboronation than the parent boronic acid. In the second section of the Account we describe 19F NMR spectroscopic analysis of the kinetics of the reaction of TMSCF3 with ketones, fluoroarenes, and alkenes. Processes initiated by substoichiometric "TBAT" ([Ph3SiF2][Bu4N]) involve anionic chain reactions in which low concentrations of [CF3]- are rapidly and reversibly liberated from a siliconate reservoir, [TMS(CF3)2][Bu4N]. Increased TMSCF3 concentrations reduce the [CF3]- concentration and thus inhibit the rates of CF3 transfer. Computation and kinetics reveal that the TMSCF3 intermolecularly abstracts fluoride from [CF3]- to generate the CF2, in what would otherwise be an endergonic α-fluoride elimination. Starting from [CF3]- and CF2, a cascade involving perfluoroalkene homologation results in the generation of a hindered perfluorocarbanion, [C11F23]-, and inhibition. The generation of CF2 from TMSCF3 is much more efficiently mediated by NaI, and in contrast to TBAT, the process undergoes autoacceleration. The process involves NaI-mediated α-fluoride elimination from [CF3][Na] to generate CF2 and a [NaI·NaF] chain carrier. Chain-branching, by [(CF2)3I][Na] generated in situ (CF2 + TFE + NaI), causes autoacceleration. Alkenes that efficiently capture CF2 attenuate the chain-branching, suppress autoacceleration, and lead to less rapid difluorocyclopropanation. The Account also highlights how a collaborative approach to experiment and computation enables mechanistic insight for control of processes.


Assuntos
Ésteres , Fluoretos , Alcenos/química , Ácidos Borônicos/química , Ésteres/química , Indicadores e Reagentes , Cinética
5.
J Org Chem ; 88(24): 17450-17460, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38041656

RESUMO

As reported by Zhao, the TBAT ([Ph3SiF2]-[Bu4N]+)-initiated reaction of ethyl salicylate with TMSCF3 in THF generates α,α-difluoro-3-coumaranones via the corresponding O-silylated ethoxy ketals. The mechanism has been investigated by in situ 19F and 29Si NMR spectroscopy, CF2-trapping, competition, titration, and comparison of the kinetics with the 3-, 4-, 5-, and 6-fluoro ethyl salicylate analogues and their O-silylated derivatives. The process evolves in five distinct stages, each arising from a discrete array of anion speciations that modulate a sequence of silyl-transfer chain reactions. The deconvolution of coupled equilibria between salicylate, [CF3]-, and siliconate [Me3Si(CF3)2]- anions allowed the development of a kinetic model that accounts for the first three stages. The model provides valuable practical insights. For example, it explains how the initial concentrations of the TMSCF3 and salicylate and the location of electron-withdrawing salicylate ring substituents profoundly impact the overall viability of the process, how stoichiometric CF3H generation can be bypassed by using the O-silylated salicylate, and how the very slow liberation of the α,α-difluoro-3-coumaranone can be rapidly accelerated by evaporative or aqueous workup.

6.
J Am Chem Soc ; 144(33): 15372-15382, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969479

RESUMO

The Ni/Ir-photocatalyzed coupling of an aryl bromide (ArBr) with an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr], [Ni], [Ir]) are found to control the rate of ArBr consumption, but not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to show that the complex undergoes Ir-photocatalyzed conversion to products (Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr. A range of competing absorption and quenching effects lead to complex correlations between the Ir and Ni catalyst loadings and the reaction rate. Differences in the Ir/Ni Beer-Lambert absorption profiles allow the rate to be increased by the use of a shorter-wavelength light source without compromising the selectivity. A minimal kinetic model for the process allows simulation of the reaction and provides insights for optimization of these processes in the laboratory.


Assuntos
Brometos , Níquel , Catálise , Simulação por Computador , Cinética , Níquel/química
7.
J Am Chem Soc ; 144(10): 4572-4584, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230845

RESUMO

Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from ß-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.


Assuntos
Azidas , Fluoretos , Álcalis , Ânions/química , Catálise , Hidrogênio , Ligação de Hidrogênio , Cinética , Azida Sódica
8.
J Org Chem ; 87(1): 721-729, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928611

RESUMO

The kinetics of quinuclidine displacement of BH3 from a wide range of Lewis base borane adducts have been measured. Parameterization of these rates has enabled the development of a nucleofugality scale (NFB), shown to quantify and predict the leaving group ability of a range of other Lewis bases. Additivity observed across a number of series R'3-nRnX (X = P, N; R' = aryl, alkyl) has allowed the formulation of related substituent parameters (nfPB, nfAB), providing a means of calculating NFB values for a range of Lewis bases that extends far beyond those experimentally derived. The utility of the nucleofugality parameter is explored by the correlation of the substituent parameter nfPB with the hydrolyses rates of a series of alkyl and aryl MIDA boronates under neutral conditions. This has allowed the identification of MIDA boronates with heteroatoms proximal to the reacting center, showing unusual kinetic lability or stability to hydrolysis.


Assuntos
Boranos , Bases de Lewis , Hidrólise , Cinética
9.
J Am Chem Soc ; 143(50): 21079-21099, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870970

RESUMO

Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.

10.
J Am Chem Soc ; 143(4): 2097-2107, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427456

RESUMO

Alkylidene carbenes undergo rapid inter- and intramolecular reactions and rearrangements, including 1,2-migrations of ß-substituents to generate alkynes. Their propensity for substituent migration exerts profound influence over the broader utility of alkylidene carbene intermediates, yet prior efforts to categorize 1,2-migratory aptitude in these elusive species have been hampered by disparate modes of carbene generation, ultrashort carbene lifetimes, mechanistic ambiguities, and the need to individually prepare a series of 13C-labeled precursors. Herein we report on the rearrangement of 13C-alkylidene carbenes generated in situ by the homologation of carbonyl compounds with [13C]-Li-TMS-diazomethane, an approach that obviates the need for isotopically labeled substrates and has expedited a systematic investigation (13C{1H} NMR, DLPNO-CCSD(T)) of migratory aptitudes in an unprecedented range of more than 30 alkylidene carbenes. Hammett analyses of the reactions of 26 differentially substituted benzophenones reveal several counterintuitive features of 1,2-migration in alkylidene carbenes that may prove of utility in the study and synthetic application of unsaturated carbenes more generally.

11.
J Am Chem Soc ; 143(36): 14814-14826, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460235

RESUMO

The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.

12.
J Am Chem Soc ; 143(49): 21010-21023, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846131

RESUMO

The air tolerant precatalyst, [Rh(L)(NBD)]Cl ([1]Cl) [L = κ3-(iPr2PCH2CH2)2NH, NBD = norbornadiene], mediates the selective synthesis of N-methylpolyaminoborane, (H2BNMeH)n, by dehydropolymerization of H3B·NMeH2. Kinetic, speciation, and DFT studies show an induction period in which the active catalyst, Rh(L)H3 (3), forms, which sits as an outer-sphere adduct 3·H3BNMeH2 as the resting state. At the end of catalysis, dormant Rh(L)H2Cl (2) is formed. Reaction of 2 with H3B·NMeH2 returns 3, alongside the proposed formation of boronium [H2B(NMeH2)2]Cl. Aided by isotopic labeling, Eyring analysis, and DFT calculations, a mechanism is proposed in which the cooperative "PNHP" ligand templates dehydrogenation, releasing H2B═NMeH (ΔG‡calc = 19.6 kcal mol-1). H2B═NMeH is proposed to undergo rapid, low barrier, head-to-tail chain propagation for which 3 is the catalyst/initiator. A high molecular weight polymer is formed that is relatively insensitive to catalyst loading (Mn ∼71 000 g mol-1; D, of ∼ 1.6). The molecular weight can be controlled using [H2B(NMe2H)2]Cl as a chain transfer agent, Mn = 37 900-78 100 g mol-1. This polymerization is suggested to arise from an ensemble of processes (catalyst speciation, dehydrogenation, propagation, chain transfer) that are geared around the concentration of H3B·NMeH2. TGA and DSC thermal analysis of polymer produced on scale (10 g, 0.01 mol % [1]Cl) show a processing window that allows for melt extrusion of polyaminoborane strands, as well as hot pressing, drop casting, and electrospray deposition. By variation of conditions in the latter, smooth or porous microstructured films or spherical polyaminoboranes beads (∼100 nm) result.

13.
J Org Chem ; 86(13): 9023-9029, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34155887

RESUMO

Quantitative NMR spectroscopy (qNMR) is an essential tool in organic chemistry, with applications including reaction monitoring, mechanistic analysis, and purity determination. Establishing the correct acquisition rate for consecutive qNMR scans requires knowledge of the longitudinal relaxation time constants (T1) for all of the nuclei being monitored. We report a simple method that is about 10-fold faster than the conventional inversion recovery technique for the estimation of T1.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
14.
J Am Chem Soc ; 142(34): 14649-14663, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786804

RESUMO

The mechanism of CF2 transfer from TMSCF3 (1), mediated by TBAT (2-12 mol %) or by NaI (5-20 mol %), has been investigated by in situ/stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation and competing TFE/c-C3F6/homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2 transfer efficiency and selectivity, the effect of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing autoinhibition (TBAT) or quasi-stochastic autoacceleration (NaI) and cogenerating perfluoroalkene side products. An overarching mechanism involving direct and indirect fluoride transfer from a CF3 anionoid to TMSCF3 (1) has been elucidated. It allows rationalization of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.

15.
J Am Chem Soc ; 141(17): 7181-7193, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943722

RESUMO

Controlling the regioselectivity of ambident nucleophiles toward alkylating agents is a fundamental problem in heterocyclic chemistry. Unsubstituted triazoles are particularly challenging, often requiring inefficient stepwise protection-deprotection strategies and prefunctionalization protocols. Herein we report on the alkylation of archetypal ambident 1,2,4-triazole, 1,2,3-triazole, and their anions, analyzed by in situ 1H/19F NMR, kinetic modeling, diffusion-ordered NMR spectroscopy, X-ray crystallography, highly correlated coupled-cluster computations [CCSD(T)-F12, DF-LCCSD(T)-F12, DLPNO-CCSD(T)], and Marcus theory. The resulting mechanistic insights allow design of an organocatalytic methodology for ambident control in the direct N-alkylation of unsubstituted triazole anions. Amidinium and guanidinium receptors are shown to act as strongly coordinating phase-transfer organocatalysts, shuttling triazolate anions into solution. The intimate ion pairs formed in solution retain the reactivity of liberated triazole anions but, by virtue of highly regioselective ion pairing, exhibit alkylation selectivities that are completely inverted (1,2,4-triazole) or substantially enhanced (1,2,3-triazole) compared to the parent anions. The methodology allows direct access to 4-alkyl-1,2,4-triazoles ( rr up to 94:6) and 1-alkyl-1,2,3-triazoles ( rr up to 99:1) in one step. Regioselective ion pairing acts in effect as a noncovalent in situ protection mechanism, a concept that may have broader application in the control of ambident systems.

16.
J Am Chem Soc ; 141(46): 18600-18611, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31656074

RESUMO

The mechanism of R2BH-catalyzed hydroboration of alkynes by 1,3,2-dioxaborolanes has been investigated by in situ 19F NMR spectroscopy, kinetic simulation, isotope entrainment, single-turnover labeling (10B/2H), and density functional theory (DFT) calculations. For the Cy2BH-catalyzed hydroboration 4-fluorophenylacetylene by pinacolborane, the resting state is the anti-Markovnikov addition product ArCH = CHBCy2. Irreversible and turnover-rate limiting reaction with pinacolborane (k ≈ 7 × 10-3 M-1 s-1) regenerates Cy2BH and releases E-Ar-CH═CHBpin. Two irreversible events proceed in concert with turnover. The first is a Markovnikov hydroboration leading to regioisomeric Ar-C(Bpin)═CH2. This is unreactive to pinacolborane at ambient temperature, resulting in catalyst inhibition every ∼102 turnovers. The second is hydroboration of the alkenylboronate to give ArCH2CH(BCy2)Bpin, again leading to catalyst inhibition. 9-BBN behaves analogously to Cy2BH, but with higher anti-Markovnikov selectivity, a lower barrier to secondary hydroboration, and overall lower efficiency. The key process for turnover is B-H/C-B metathesis, proceeding by stereospecific transfer of the E-alkenyl group within a transient, µ-B-H-B bridged, 2-electron-3-center bonded B-C-B intermediate.

17.
Faraday Discuss ; 220(0): 179-195, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31531438

RESUMO

The kinetics of the nominally irreversible reaction of the third generation Grubbs catalyst G-III-Br (4.6 µM) with ethyl vinyl ether (EVE) in toluene at 5 °C have been re-visited. There is a rapid equilibrium between the bispyridyl form of G-III-Br, 1, and its monopyridyl form, 2 (K ≈ 0.001 M). The empirical rate constants (kobs.) for the reaction with EVE, determined UV-vis spectrophotometrically under optimised anaerobic stopped-flow conditions, are found by testing the quality of fit of a series of steady-state approximations. The kinetics do not correlate with solely dissociative or associative pathways, but do correlate with a mechanism where these pathways converge at an alkene complex primed to undergo metathesis. In the presence of traces of air there is a marked increased in the rate of decay of G-III-Br due to competing oxidation to yield benzaldehyde; a process that appears to be very efficiently catalysed by trace metal contaminants. The apparent acceleration of the initiation process may account for the rates determined herein being over an order of magnitude lower than previously estimated.

18.
Faraday Discuss ; 220(0): 71-85, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31531436

RESUMO

Raman spectroscopy is well-suited to the study of bioorthogonal reaction processes because it is a non-destructive technique, which employs relatively low energy laser irradiation, and water is only very weakly scattered in the Raman spectrum enabling live cell imaging. In addition, Raman spectroscopy allows species-specific label-free visualisation; chemical contrast may be achieved when imaging a cell in its native environment without fixatives or stains. Combined with the rapid advances in the field of Raman imaging over the last decade, particularly in stimulated Raman spectroscopy (SRS), this technique has the potential to revolutionise our mechanistic understanding of the biochemical and medicinal chemistry applications of bioorthogonal reactions. Current approaches to the kinetic analysis of bioorthogonal reactions (including heat flow calorimetry, UV-vis spectroscopy, fluorescence, IR, NMR and MS) have a number of practical shortcomings for intracellular applications. We highlight the advantages offered by Raman microscopy for reaction analysis in the context of both established and emerging bioorthogonal reactions, including the copper(i) catalysed azide-alkyne cycloaddition (CuAAC) click reaction and Glaser-Hay coupling.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Catálise , Reação de Cicloadição , Cinética , Estrutura Molecular , Análise Espectral Raman
19.
J Am Chem Soc ; 140(35): 11112-11124, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30080973

RESUMO

The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X- (<0.004 to 10 mol %), has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, LFER, addition of ligands (18-c-6, crypt-222), and density functional theory calculations. The kinetics, reaction orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X-). Traces of exogenous inhibitors present in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also affect the kinetics. Some reactions are complete in milliseconds, others take hours, and others stall before completion. Despite these differences, a general mechanism has been elucidated in which the product alkoxide and CF3- anion act as chain carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of CF3- by the α-C-H of the ketone and the OH of the enol. The overarching mechanism for trifluoromethylation by R3SiCF3, in which pentacoordinate siliconate intermediates are unable to directly transfer CF3- as a nucleophile or base, rationalizes why the turnover rate (per M+X- initiator) depends on the initial concentration (but not identity) of X-, the identity (but not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl/R3SiCF3 ratio. It also rationalizes which R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X- initiator.

20.
J Am Chem Soc ; 140(4): 1481-1495, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29286647

RESUMO

A systematic study of the catalyst structure and overall charge for the dehydropolymerization of H3B·NMeH2 to form N-methyl polyaminoborane is reported using catalysts based upon neutral and cationic {Rh(Xantphos-R)} fragments in which PR2 groups are selected from Et, iPr, and tBu. The most efficient systems are based upon {Rh(Xantphos-iPr)}, i.e., [Rh(κ3-P,O,P-Xantphos-iPr)(H)2(η1-H3B·NMe3)][BArF4], 6, and Rh(κ3-P,O,P-Xantphos-iPr)H, 11. While H2 evolution kinetics show both are fast catalysts (ToF ≈ 1500 h-1) and polymer growth kinetics for dehydropolymerization suggest a classical chain growth process for both, neutral 11 (Mn = 28 000 g mol-1, D = 1.9) promotes significantly higher degrees of polymerization than cationic 6 (Mn = 9000 g mol-1, D = 2.9). For 6 isotopic labeling studies suggest a rate-determining NH activation, while speciation studies, coupled with DFT calculations, show the formation of a dimetalloborylene [{Rh(κ3-P,O,P-Xantphos-iPr)}2B]+ as the, likely dormant, end product of catalysis. A dual mechanism is proposed for dehydropolymerization in which neutral hydrides (formed by hydride transfer in cationic 6 to form a boronium coproduct) are the active catalysts for dehydrogenation to form aminoborane. Contemporaneous chain-growth polymer propagation is suggested to occur on a separate metal center via head-to-tail end chain B-N bond formation of the aminoborane monomer, templated by an aminoborohydride motif on the metal.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa