Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mar Drugs ; 22(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921549

RESUMO

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Genômica , Filogenia , Regiões Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genômica/métodos , Psychrobacter/genética , Psychrobacter/isolamento & purificação , Pseudoalteromonas/genética , Família Multigênica
2.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156161

RESUMO

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Assuntos
Metais Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cloreto de Sódio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Galactose/metabolismo , Manose/metabolismo , Regiões Antárticas , Ácidos Urônicos/metabolismo , Metais Pesados/metabolismo , Sulfatos/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Galactosamina , Celulose/metabolismo
3.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286440

RESUMO

Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.


Assuntos
Produtos Biológicos , Invertebrados , Animais , Invertebrados/química , Bactérias , Ambientes Extremos , Água do Mar/microbiologia , Produtos Biológicos/farmacologia , Produtos Biológicos/química
4.
Appl Microbiol Biotechnol ; 104(7): 2923-2934, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076778

RESUMO

Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.


Assuntos
Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/fisiologia , Regiões Antárticas , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biotecnologia , Ecossistema , Matriz Extracelular de Substâncias Poliméricas/classificação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Filogenia , Água do Mar/microbiologia , Temperatura
5.
Extremophiles ; 23(1): 9-17, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30276472

RESUMO

The occurrence of cultivable fungi was investigated along the water column (25-2500 m depth) of four off-shore stations in the Mediterranean basin. An unexpected high abundance of fungi, accompanied by a scarce biodiversity, was observed up to 2500 m depth. The black yeast Hortaea werneckii, known to be one of the most salt tolerant eukaryotic organisms, was isolated for the first time from the Mediterranean Sea, and it was the dominant fungus present in seawater in almost all stations and depths, suggesting its ubiquitous distribution. Isolation of cultivable strains allowed their phylogenetic and taxonomic characterization, and demonstrated that almost all the retrieved fungal species should be considered of terrestrial origin, but well adapted to survive and reproduce at temperature and salinity conditions of the Mediterranean seawater.


Assuntos
Ascomicetos/isolamento & purificação , Água do Mar/microbiologia , Adaptação Fisiológica , Ascomicetos/classificação , Ascomicetos/genética , Mar Mediterrâneo , Filogenia , Tolerância ao Sal
6.
Arch Environ Contam Toxicol ; 77(2): 291-307, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30982081

RESUMO

Anthropogenic impact over the Pasvik River (Arctic Norway) is mainly caused by emissions from runoff from smelter and mine wastes, as well as by domestic sewage from the Russian, Norwegian, and Finnish settlements situated on its catchment area. In this study, sediment samples from sites within the Pasvik River area with different histories of metal input were analyzed for metal contamination and occurrence of metal-resistant bacteria in late spring and summer of 2014. The major differences in microbial and chemical parameters were mostly dependent on local inputs than seasonality. Higher concentrations of metals were generally detected in July rather than May, with inner stations that became particularly enriched in Cr, Ni, Cu, and Zn, but without significant differences. Bacterial resistance to metals, which resulted from viable counts on amended agar plates, was in the order Ni2+>Pb2+>Co2+>Zn2+>Cu2+>Cd2+>Hg2+, with higher values that were generally determined at inner stations. Among a total of 286 bacterial isolates (mainly achieved from Ni- and Pb-amended plates), the 7.2% showed multiresistance at increasing metal concentration (up to 10,000 ppm). Selected multiresistant isolates belonged to the genera Stenotrophomonas, Arthrobacter, and Serratia. Results highlighted that bacteria, rapidly responding to changing conditions, could be considered as true indicators of the harmful effect caused by contaminants on human health and environment and suggested their potential application in bioremediation processes of metal-polluted cold sites.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Sedimentos Geológicos/microbiologia , Metais/farmacologia , Regiões Árticas , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Metais/análise , Noruega , Filogenia , Rios , Estações do Ano , Poluentes Químicos da Água/análise
7.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180360

RESUMO

Four sponge-associated Antarctic bacteria (i.e., Winogradskyella sp. strains CAL384 and CAL396, Colwellia sp. strain GW185, and Shewanella sp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs from Winogradskyella sp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E24) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs.IMPORTANCE To date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.


Assuntos
Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Regiões Antárticas , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes , Biotecnologia/métodos , Cádmio/farmacologia , Carboidratos/análise , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Hidrocarbonetos/metabolismo , Mercúrio/farmacologia , Proteínas/análise , RNA Ribossômico 16S , Açúcares/farmacologia , Tensoativos , Temperatura , Ácidos Urônicos/análise
8.
Mar Drugs ; 16(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544601

RESUMO

Enormous marine biodiversity offers an endless reservoir of chemicals for many applications. In this scenario, the extraction of seaweeds represents an interesting source of compounds displaying antimicrobial activity. In particular, among the different red algae, Gracilaria gracilis plays an important role due to the presence of important bioactives in its composition. In spite of these features, an efficient culture system is still absent. In the present study, a novel algal culture method was developed and compared to another more common cultural practice, widely reported in literature. A higher efficiency of the new method, both for daily growth rate and biomass, was assessed. Furthermore, the growth inhibitory activity of five extracts, obtained using ethanol, methanol, acetone, chloroform or diethyl ether as a solvent, from the cultured G. gracilis was tested against Gram-positive and Gram-negative pathogens. Algal extracts exhibited a considerable inhibitory activity against B. subtilis strains, while a slight inhibition was observed against V. fischeri. The different extracts showed significant differences in bacterial growth inhibition, with the highest activity that was recorded for the ethanol extract, followed by that of methanol. Based on the chemical characterization, these findings could be related to the antimicrobial activity played by the combination of total carbohydrates and polyphenols, which were determined at high levels in ethanol and methanol extracts, as well as by the highest number and levels of single polyphenols. Conversely, the lower growth inhibitory activities found in chloroform and diethyl ether extracts could be related to the isolation of minor lipid classes (e.g., neutral and medium polar lipids) composed by fatty acids, such as stearic, oleic and arachidonic acids, typically characterized by antimicrobial activity. In consideration of the results obtained, the present study has a double implication, involving both the field of cultural practices and the exploitation of natural sources for the isolation of antimicrobial agents useful both in pharmaceutical and food applications.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Técnicas de Cultura/métodos , Gracilaria/metabolismo , Extratos Vegetais/farmacologia , Aliivibrio fischeri/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Biomassa , Gracilaria/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Alga Marinha/química , Alga Marinha/metabolismo , Solventes
9.
J Basic Microbiol ; 58(6): 532-542, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29572960

RESUMO

The Mediterranean sponge Halichondria (Halichondria) panicea was explored as a novel matrix for the isolation of biosurfactant-producing bacteria. A total of 38 (out of 56) isolates gave a good response to the employed screening tests (e.g., stable emulsion detection, surface tension measurement, hemolytic activity, and blue agar plate assay) and were selected for further analyses. The thin layer chromatography revealed a possible glucidic composition of biosurfactants. Most promising strains, i.e., those able to produce stable emulsion with percentage higher than 30% and yellow spots on TLC plates, were affiliated to the genera Pseudovibrio, Acinetobacter, and Bacillus. The biosurfactant production by two isolates (i.e., Acinetobacter sp. SpN134 and Pseudovibrio sp. SpE85) was evaluated under different culture conditions, in terms of temperature, NaCl concentration, and pH. Surface tension reduction ability was more stable than the emulsification, and resulted differently influenced by salinity, temperature, and pH. Acinetobacter sp. SpN134 resulted particularly efficient and competitive if compared with other well-known biosurfactant producers. Data suggest that sponges may represent a promising matrix for the isolation of biosurfactant-producing bacteria, reinforcing the growing interest towards filter-feeding organisms as underexplored sources of specialized bacteria.


Assuntos
Bactérias/metabolismo , Poríferos/microbiologia , Tensoativos/metabolismo , Animais , Organismos Aquáticos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Emulsões , Concentração de Íons de Hidrogênio , Itália , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Cloreto de Sódio , Tensão Superficial , Tensoativos/química , Tensoativos/isolamento & purificação , Temperatura
10.
J Environ Sci (China) ; 67: 115-126, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778143

RESUMO

Joostella strains are emerging candidates for biosurfactant production. Here such ability was analyzed for Joostella strain A8 in comparison with Alcanivorax strain A53 and Pseudomonas strain A6, all previously isolated from hydrocarbon enrichment cultures made of polychaete homogenates. In pure cultures Joostella sp. A8 showed the highest stable emulsion percentage (78.33%), hydrophobicity rate (62.67%), and an optimal surface tension reduction during growth in mineral medium supplemented with diesel oil (reduction of about 12mN/m), thus proving to be highly competitive with Alcanivorax and Pseudomonas strains. During growth in pure culture different level of biodegradation were detected for Alcanivorax strain A53 (52.7%), Pseudomonas strain A6 (38.2%) and Joostella strain A8 (26.8%). When growing in consortia, isolates achieved similar abundance values, with the best efficiency that was observed for the Joostella-Pseudomonas co-culture. Gas-chromatographic analysis revealed an increase in the biodegradation efficiency in co-cultures (about 90%), suggesting that the contemporary action of different bacterial species could improve the process. Results were useful to compare the efficiencies of well-known biosurfactant producers (i.e. Pseudomonas and Alcanivorax representatives) with a still unknown biosurfactant producer, i.e. Joostella, and to confirm them as optimal biosurfactant-producing candidates.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Flavobacteriaceae/metabolismo , Hidrocarbonetos/metabolismo , Consórcios Microbianos , Tensoativos/metabolismo
11.
BMC Genomics ; 18(1): 93, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095778

RESUMO

BACKGROUND: Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production. Indeed, biotechnological applications would greatly benefit from such analysis. RESULTS: Here, we analyzed the genomes of 38 strains belonging to different Pseudoalteromonas species and isolated from diverse ecological niches, including extreme ones (i.e. Antarctica). These sequences were used to reconstruct the largest Pseudoalteromonas pangenome computed so far, including also the two main groups of Pseudoalteromonas strains (pigmented and not pigmented strains). The downstream analyses were conducted to describe the genomic diversity, both at genus and group levels. This allowed highlighting a remarkable genomic heterogeneity, even for closely related strains. We drafted all the main evolutionary steps that led to the current structure and gene content of Pseudoalteromonas representatives. These, most likely, included an extensive genome reduction and a strong contribution of Horizontal Gene Transfer (HGT), which affected biotechnologically relevant gene sets and occurred in a strain-specific fashion. Furthermore, this study also identified the genomic determinants related to some of the most interesting features of the Pseudoalteromonas representatives, such as the production of secondary metabolites, the adaptation to cold temperatures and the resistance to abiotic compounds. CONCLUSIONS: This study poses the bases for a comprehensive understanding of the evolutionary trajectories followed in time by this peculiar bacterial genus and for a focused exploitation of their biotechnological potential.


Assuntos
Evolução Molecular , Genoma Bacteriano , Pseudoalteromonas/genética , Regiões Antárticas , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Bases de Dados Genéticas , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Pseudoalteromonas/classificação , Metabolismo Secundário/genética
12.
Microb Ecol ; 74(2): 402-415, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28289836

RESUMO

Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 104-105) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates, mainly in deep samples. The measured enzymatic activity rates suggested the potential capability of the microbial community to decompose proteins and polysaccharides. The microbial community seems to be appropriate to contribute to biogeochemical cycling in this extreme environment.


Assuntos
Pergelissolo/microbiologia , Microbiologia do Solo , Regiões Antárticas , Temperatura Baixa , Enzimas/análise , Água
13.
Microb Ecol ; 71(2): 387-400, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26337826

RESUMO

Byers Peninsula (Livingston Island, Antarctica), the largest seasonally ice-free region of the Maritime Antarctica, holds a large number of lakes, ponds, and streams. The prokaryotic structure and bacterial diversity in sediment samples collected during the 2008-2009 austral summer from five inland lakes, two coastal lakes, and an estuarine site were analyzed by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and 16S rRNA 454 tag pyrosequencing techniques, respectively. Differently from inland lakes, which range around the oligotrophic status, coastal lakes are eutrophic environments, enriched by nutrient inputs from marine animals. Although the prokaryotic abundances (estimated as DAPI stained cells) in sediment samples were quite similar among inland and coastal lakes, Bacteria always far dominated over Archaea. Despite the phylogenetic analysis indicated that most of sequences were affiliated to a few taxonomic groups, mainly referred to Proteobacteria, Bacteroidetes, and Actinobacteria, their relative abundances greatly differed from each site. Differences in bacterial composition showed that lacustrine sediments were more phyla rich than the estuarine sediment. Proteobacterial classes in lacustrine samples were dominated by Betaproteobacteria (followed by Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), while in the estuarine sample, they were mainly related to Gammaproteobacteria (followed by Deltaproteobacteria, Epsilonproteobacteria, Alphaproteobacteria, and Betaproteobacteria). Higher number of sequences of Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, and Planctomycetes were observed in sediments of inland lakes compared to those of coastal lakes, whereas Chloroflexi were relatively more abundant in the sediments of coastal eutrophic lakes. As demonstrated by the great number of dominant bacterial genera, bacterial diversity was higher in the sediments of inland lakes than that in coastal lakes. Ilumatobacter (Actinobacteria), Gp16 (Acidobacteria), and Gemmatimonas (Gemmatimonadetes) were recovered as dominant genera in both inland and coastal lakes, but not in the estuarine sample, indicating that they may be useful markers of Antarctic lakes. The proximity to the sea, the different lake depths and the external or internal origin of the nutrient sources shape the bacterial communities composition in lacustrine sediments of Byers Peninsula.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Regiões Antárticas , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Sedimentos Geológicos/química , Lagos/química , Filogenia
14.
J Basic Microbiol ; 56(9): 963-74, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27119461

RESUMO

Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production.


Assuntos
Antozoários/microbiologia , Biodegradação Ambiental , Brevibacterium/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Vibrio/metabolismo , Poluentes Químicos da Água/metabolismo , Alcanos/metabolismo , Animais , Organismos Aquáticos/microbiologia , Brevibacterium/genética , Brevibacterium/isolamento & purificação , Oxirredução , RNA Ribossômico 16S/genética , Salinidade , Tensoativos/metabolismo , Temperatura , Vibrio/genética , Vibrio/isolamento & purificação , Poluição Química da Água
15.
Ecotoxicology ; 24(6): 1294-304, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059469

RESUMO

The effect of heavy metals on the activity of biosurfactants produced by Joostella strain A8 from the polychaete Megalomma claparedei was investigated. Biosurfactant activity was first improved by evaluating the influence of abiotic parameters. Higher E(24) indices were achieved at 25 °C in mineral salt medium supplemented with 2 % glucose, 3 % sodium chloride (w/v) and 0.1 % ammonium chloride (w/v). Considerable surface tension reduction was never recorded. Heavy metal tolerance was preliminarily assayed by plate diffusion method resulting in the order of toxicity Cd > Cu > Zn. The activity of biosurfactants was then evaluated in the presence of heavy metals at different concentrations in liquid cultures that were incubated under optimal conditions for biosurfactant activity. The production of stable emulsions resulted generally higher in the presence of metals. These findings suggest that biosurfactant production could represent a bacterial adaptive strategy to defend cells from a stress condition derived from heavy metals in the bulk environment.


Assuntos
Flavobacteriaceae/efeitos dos fármacos , Metais Pesados/toxicidade , Poliquetos/microbiologia , Tensoativos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Tolerância a Medicamentos , Flavobacteriaceae/isolamento & purificação
16.
Extremophiles ; 18(1): 35-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150693

RESUMO

Microorganisms from Antarctica have evolved particular strategies to cope with cold. Moreover, they have been recently reported as producers of antimicrobial compounds, which inhibit the growth of other bacteria. In this work we characterized from different viewpoints the Gillisia sp. CAL575 strain, a psychrotrophic bacterium that produces microbial volatile organic compounds involved in the growth inhibition of Burkholderia cepacia complex members. Sequencing and analysis of the whole genome of Gillisia sp. CAL575 revealed that it includes genes that are involved in secondary metabolite production, adaptation to cold conditions, and different metabolic pathways for the production of energy. All these features make Gillisia sp. CAL575 a possible tool for biotechnology.


Assuntos
Antibacterianos/farmacologia , Flavobacteriaceae/genética , Genoma Bacteriano , Fenótipo , Compostos Orgânicos Voláteis/farmacologia , Adaptação Fisiológica , Complexo Burkholderia cepacia/efeitos dos fármacos , Temperatura Baixa , Flavobacteriaceae/química , Flavobacteriaceae/metabolismo
17.
Front Microbiol ; 15: 1341641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404594

RESUMO

Introduction: Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods: The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results: Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions: Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.

18.
Water Environ Res ; 96(5): e11039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787335

RESUMO

This explorative study was aimed at first characterizing the sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Northern Fennoscandia), in terms of associated microbial communities and pollutant accumulation. Persistent organic pollutants were determined in sponge mesohyl tissues, along with the estimation of the microbial enzymatic activity rates, prokaryotic abundance and morphometric traits, and the analysis of the taxonomic bacterial diversity by next-generation sequencing techniques. The main bacterial groups associated with S. lacustris were Alphaproteobacteria and Gammaproteobacteria, followed by Chloroflexi and Acidobacteria. The structure of the S. lacustris-associated bacterial communities was in sharp contrast to those of the bacterioplankton, being statistically close to those found in sediments. Dieldrin was measured at higher concentrations in the sponge tissues (3.1 ± 0.4 ng/g) compared to sediment of the same site (0.04 ± 0.03 ng/g). Some taxonomic groups were possibly related to the occurrence of certain contaminants, as was the case of Patescibacteria and dieldrin. Obtained results substantially contribute to the still scarce knowledge of bacterial community diversity, activities, and ecology in freshwater sponges. PRACTITIONER POINTS: Microbial community associated with Spongilla lacustris is probably shaped by the occurrence of certain contaminants, mainly dieldrin and heavy metals. A higher accumulation of dieldrin in the sponge mesohyl tissues than in sediment was determined. S. lacustris is suggested as sponge species to be used as a sentinel of pesticide pollution in the Pasvik River. S. lacustris, living in tight contact with soft substrates, harbored communities more similar to sediment than water communities.


Assuntos
Bactérias , Poríferos , Rios , Poluentes Químicos da Água , Animais , Poríferos/microbiologia , Rios/química , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Microbiota , Monitoramento Ambiental
19.
Extremophiles ; 17(4): 565-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23588647

RESUMO

Culturable psychrotolerant bacteria were isolated from the top snow on the high Antarctic Plateau surrounding the research station Concordia. A total of 80 isolates were recovered, by enrichment cultures, from two different isolation sites (a distant pristine site [75° S 123° E] and a site near the secondary runway of Concordia). All isolates were classified to the genus Paenibacillus by 16S rRNA gene phylogenetic analysis and belonged to two different species (based on threshold of 97 % similarity in 16S rRNA gene sequence). ERIC-PCR fingerprinting indicated that the isolates from the two different sites were not all clonal. All isolates grew well from 4 to 37 °C and were resistant to ampicillin and streptomycin. In addition, the isolates from the secondary runway were resistant to chromate and sensitive to chloramphenicol, contrary to those from the pristine site. The isolates were compared to 29 Paenibacillus isolates, which were previously recovered from inside the Concordia research station. One of these inside isolates showed ERIC- and REP-PCR fingerprinting profiles identical to those of the runway isolates and was the only inside isolate that was resistant to chromate and sensitive to chloramphenicol. The latter suggested that dissemination of culturable Paenibacillus strains between the harsh Antarctic environment and the inside of the Concordia research station occurred. In addition, inducible prophages, which are potentially involved in horizontal dissemination of genes, were detected in Paenibacillus isolates recovered from outside and inside the station. The highest lysogeny was observed in strains harvested from the hostile environment outside the station.


Assuntos
Ecossistema , Paenibacillus/isolamento & purificação , Neve/microbiologia , Regiões Antárticas , Genes Bacterianos/genética , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/virologia , Filogenia , RNA Ribossômico 16S/genética
20.
Ecotoxicology ; 22(2): 240-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23184332

RESUMO

The response of bacterial isolates from Antarctic sediments to polychlorinated biphenyls (Aroclor 1242 mixture), heavy metal salts (cadmium, copper, mercury and zinc) and antibiotics (ampicillin, chloramphenicol, kanamycin and streptomycin) was investigated. Overall, the ability to growth in the presence of Aroclor 1242 as a sole carbon source was observed for 22 isolates that mainly belonged to Psychrobacter spp. Tolerance to the heavy metals assayed in this study was in the order of Cd > Cu > Zn > Hg and appeared to be strictly related to the metal concentrations, as determined during previous chemical surveys in the same area. With regards to antibiotic assays, the response of the isolates to the tested antibiotics ranged from complete resistance to total susceptibility. In particular, resistances to ampicillin and chloramphenicol were very pronounced in the majority of isolates. Our isolates differently responded to the presence of toxic compounds primarily based on their phylogenetic affiliation and secondarily at strain level. Moreover, the high incidence of resistance either to metal or antibiotics, in addition to the capability to grow on PCBs, confirm that bacteria are able to cope and/or adapt to the occurrence pollutants even in low human-impacted environments.


Assuntos
Antibacterianos/toxicidade , Arocloros/toxicidade , Bactérias/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Metais Pesados/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Adaptação Fisiológica , Ampicilina/toxicidade , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Cloreto de Cádmio/toxicidade , Cloranfenicol/toxicidade , Cloretos/toxicidade , Cobre/toxicidade , DNA Bacteriano/análise , Farmacorresistência Bacteriana Múltipla , Canamicina/toxicidade , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Ribotipagem , Estreptomicina/toxicidade , Compostos de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa