Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046438

RESUMO

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Assuntos
Ciclo Estral , Camundongos/fisiologia , Comportamento Sexual Animal , Olfato , Órgão Vomeronasal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Feromônios/metabolismo , Progesterona/metabolismo , Proteínas/química , Caracteres Sexuais , Órgão Vomeronasal/citologia
2.
Cell ; 157(3): 676-88, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766811

RESUMO

During social interactions, an individual's behavior is largely governed by the subset of signals emitted by others. Discrimination of "self" from "other" regulates the territorial urine countermarking behavior of mice. To identify the cues for this social discrimination and understand how they are interpreted, we designed an olfactory-dependent countermarking assay. We find major urinary proteins (MUPs) sufficient to elicit countermarking, and unlike other vomeronasal ligands that are detected by specifically tuned sensory neurons, MUPs are detected by a combinatorial strategy. A chemosensory signature of "self" that modulates behavior is developed via experience through exposure to a repertoire of MUPs. In contrast, aggression can be elicited by MUPs in an experience-independent but context-dependent manner. These findings reveal that individually emitted chemical cues can be interpreted based on their combinatorial permutation and relative ratios, and they can transmit both fixed and learned information to promote multiple behaviors.


Assuntos
Camundongos/fisiologia , Feromônios/análise , Feromônios/metabolismo , Proteínas/análise , Proteínas/metabolismo , Comportamento Social , Animais , Feminino , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Cell ; 154(2): 452-64, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870131

RESUMO

Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:


Assuntos
Técnicas Genéticas , Camundongos Knockout , Fenótipo , Animais , Doença/genética , Modelos Animais de Doenças , Feminino , Genes Essenciais , Estudo de Associação Genômica Ampla , Masculino , Camundongos
4.
Cell ; 141(4): 692-703, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478258

RESUMO

Potential predators emit uncharacterized chemosignals that warn receiving species of danger. Neurons that sense these stimuli remain unknown. Here we show that detection and processing of fear-evoking odors emitted from cat, rat, and snake require the function of sensory neurons in the vomeronasal organ. To investigate the molecular nature of the sensory cues emitted by predators, we isolated the salient ligands from two species using a combination of innate behavioral assays in naive receiving animals, calcium imaging, and c-Fos induction. Surprisingly, the defensive behavior-promoting activity released by other animals is encoded by species-specific ligands belonging to the major urinary protein (Mup) family, homologs of aggression-promoting mouse pheromones. We show that recombinant Mup proteins are sufficient to activate sensory neurons and initiate defensive behavior similarly to native odors. This co-option of existing sensory mechanisms provides a molecular solution to the difficult problem of evolving a variety of species-specific molecular detectors.


Assuntos
Comportamento Animal , Feromônios/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Gatos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Comportamento Predatório , Proteínas/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Serpentes , Especificidade da Espécie
5.
Clin Genet ; 105(4): 376-385, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38148624

RESUMO

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Assuntos
Transtornos do Olfato , Transtornos do Olfato/congênito , Qualidade de Vida , Humanos , Transtornos do Olfato/genética , Transtornos do Olfato/diagnóstico , Mutação , Transdução de Sinais , Olfato/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
6.
Brain ; 146(11): 4766-4783, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37437211

RESUMO

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genética
7.
Cell ; 133(7): 1137-9, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585346

RESUMO

In the fruit fly Drosophila, odorant-binding proteins are secreted into the fluid that bathes olfactory neurons. Laughlin et al. (2008) now challenge the assumption that the odorant-binding protein LUSH passively transports its pheromone to a specific olfactory receptor. Instead, LUSH undergoes a conformational change upon pheromone binding that is sufficient for neuronal activation.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Olfato , Animais , Feromônios/metabolismo , Conformação Proteica
8.
BMC Vet Res ; 19(1): 125, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592253

RESUMO

BACKGROUND: The veterinary care of cats and dogs is increasingly embracing innovations first applied to human health, including an increased emphasis on preventative care and precision medicine. Large scale human population biobanks have advanced research in these areas; however, few have been established in veterinary medicine. The MARS PETCARE BIOBANK™ (MPB) is a prospective study that aims to build a longitudinal bank of biological samples, with paired medical and lifestyle data, from 20,000 initially healthy cats and dogs (10,000 / species), recruited through veterinary hospitals over a ten-year period. Here, we describe the MPB protocol and discuss its potential as a platform to increase understanding of why and how diseases develop and how to advance personalised veterinary healthcare. METHODS: At regular intervals, extensive diet, health and lifestyle information, electronic medical records, clinicopathology and activity data are collected, genotypes, whole genome sequences and faecal metagenomes analysed, and blood, plasma, serum, and faecal samples stored for future research. DISCUSSION: Proposed areas for research include the early detection and progression of age-related disease, risk factors for common conditions, the influence of the microbiome on health and disease and, through genome wide association studies, the identification of candidate loci for disease associated genetic variants. Genomic data will be open access and research proposals for access to data and samples will be considered. Over the coming years, the MPB will provide the longitudinal data and systematically collected biological samples required to generate important insights into companion animal health, identifying biomarkers of disease, supporting earlier identification of risk, and enabling individually tailored interventions to manage disease.


Assuntos
Doenças do Gato , Doenças do Cão , Humanos , Gatos , Cães , Animais , Estudos Longitudinais , Bancos de Espécimes Biológicos , Doenças do Gato/genética , Estudo de Associação Genômica Ampla/veterinária , Estudos Prospectivos , Doenças do Cão/genética
9.
PLoS Genet ; 16(9): e1008916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32877400

RESUMO

Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Microcefalia/genética , Obesidade/genética , Animais , Criança , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Impressão Genômica , Heterozigoto , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Herança Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/metabolismo , Mutação , Obesidade/metabolismo , Fenótipo
10.
Br J Nutr ; 128(9): 1689-1699, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34789346

RESUMO

The impact of dietary phosphorus on chronic renal disease in cats, humans and other species is receiving increasing attention. As Ca and P metabolism are linked, the ratio of Ca:P is an important factor for consideration when formulating diets for cats and other animals. Here, we describe a fully randomised crossover study including twenty-four healthy, neutered adult cats, investigating postprandial responses in plasma P, ionised Ca and parathyroid hormone (PTH) following one meal (50 % of individual metabolic energy requirement) of each of six experimental diets. Diets were formulated to provide P at either 0·75 or 1·5 g/1000 kcal (4184 kJ) from the soluble phosphorus salt sodium tripolyphosphate (STPP, Na5P3O10), variable levels of organic Ca and P sources, and an intended total Ca:P of about 1·0, 1·5 or 2·0. For each experimental diet, baseline fasted blood samples were collected prior to the meal, and serial blood samples collected hourly for 6 h thereafter. For all diets, a significant increase from baseline was observed at 120 min in plasma PTH (P < 0·001). The diet containing the highest STPP inclusion level and lowest Ca:P induced the highest peaks in postprandial plasma P and PTH levels (1·8 mmol/l and 27·2 pg/ml, respectively), and the longest duration of concentrations raised above baseline were observed at 3 h for P and 6 h for PTH. Data indicate that Ca:P modulates postprandial plasma P and PTH. Therefore, when formulating diets containing soluble P salts for cats, increasing the Ca:P ratio should be considered.


Assuntos
Cálcio da Dieta , Fósforo na Dieta , Adulto , Gatos , Animais , Humanos , Cálcio da Dieta/metabolismo , Fósforo , Hormônio Paratireóideo , Dieta/veterinária , Cálcio
11.
Br J Nutr ; 126(11): 1626-1641, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33550999

RESUMO

High dietary phosphorus (P), particularly soluble salts, may contribute to chronic kidney disease development in cats. The aim of the present study was to assess the safety of P supplied at 1 g/1000 kcal (4184kJ) from a highly soluble P salt in P-rich dry format feline diets. Seventy-five healthy adult cats (n 25/group) were fed either a low P control (1·4 g/1000 kcal [4184kJ]; Ca:P ratio 0·97) or one of two test diets with 4 g/1000 kcal (4184 kJ); Ca:P 1·04 or 5 g/1000 kcal (4184kJ); Ca:P 1·27, both incorporating 1 g/1000 kcal (4184 kJ) sodium tripolyphosphate (STPP) - for a period of 30 weeks in a randomised parallel-group study. Health markers in blood and urine, glomerular filtration rate, renal ultrasound and bone density were assessed at baseline and at regular time points. At the end of the test period, responses following transition to a commercial diet (total P - 2·34 g/1000 kcal [4184kJ], Ca:P 1·3) for a 4-week washout period were also assessed. No adverse effects on general, kidney or bone (skeletal) function and health were observed. P and Ca balance, some serum biochemistry parameters and regulatory hormones were increased in cats fed test diets from week 2 onwards (P ≤ 0·05). Data from the washout period suggest that increased serum creatinine and urea values observed in the two test diet groups were influenced by dietary differences during the test period, and not indicative of changes in renal function. The present data suggest no observed adverse effect level for feline diets containing 1 g P/1000 kcal (4184 kJ) from STPP and total P level of up to 5 g/1000 kcal (4184 kJ) when fed for 30 weeks.


Assuntos
Fósforo na Dieta , Animais , Gatos , Cálcio , Dieta/veterinária , Rim , Nível de Efeito Adverso não Observado , Fósforo , Fósforo na Dieta/efeitos adversos
12.
BMC Genomics ; 21(1): 196, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126975

RESUMO

BACKGROUND: Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with 874 in human and 1483 loci in mouse (including pseudogenes). The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. RESULTS: Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon. CONCLUSIONS: This work provides the most comprehensive curation effort of the human and mouse OR gene repertoires to date. The complete annotation has been integrated into the GENCODE reference gene set, for immediate availability to the research community.


Assuntos
Sequência Conservada , Éxons/genética , Locos de Características Quantitativas , Receptores Odorantes/genética , Animais , Curadoria de Dados/métodos , Bases de Dados Genéticas , Loci Gênicos , Genoma Humano , Humanos , Camundongos , Pseudogenes
13.
Proc Natl Acad Sci U S A ; 114(35): 9421-9426, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28811369

RESUMO

An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is TMEM18, although the molecular mechanisms mediating these effects remain entirely unknown. Tmem18 expression in the murine hypothalamic paraventricular nucleus (PVN) was altered by changes in nutritional state. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We provide evidence that TMEM18 has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.


Assuntos
Apetite/genética , Peso Corporal/genética , Proteínas de Membrana/metabolismo , Obesidade/genética , Animais , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas de Transporte Vesicular
14.
Am J Hum Genet ; 99(2): 253-74, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27453576

RESUMO

Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.


Assuntos
Proteínas de Transporte/genética , Haploinsuficiência/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Córtex Cerebral/metabolismo , Montagem e Desmontagem da Cromatina/genética , Códon sem Sentido/genética , Transtornos Cognitivos/genética , Mutação da Fase de Leitura/genética , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/psicologia , Masculino , Camundongos , Microcefalia/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Repressoras , Comportamento Social , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma
15.
Br J Nutr ; 121(3): 270-284, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420000

RESUMO

Phosphorus is present in diets as naturally occurring P from raw materials or added as an inorganic salt. However, little is known about postprandial kinetics of P absorption in cats. Here, we describe several studies quantifying postprandial kinetics following the ingestion of diets of varying composition. Briefly, cats were fed a meal consisting of 50 % of their metabolic energy requirement in a randomised crossover design. A pre-meal baseline blood sample was taken via cephalic catheter and repeated measurements taken regularly up to 6 h post-meal to assess the whole blood ionised Ca, plasma P and parathyroid hormone concentrations. A diet containing 4·8 g total P/4184 kJ (1000 kcal), 3·5 g P from sodium dihydrogen phosphate (NaH2PO4)/4184 kJ (1000 kcal) and Ca:P 0·6 caused a marked increase in plasma P from baseline to a peak of 1·976 (95% CI 1·724, 2·266) mmol/l (P <0·001), whereas a diet containing 3·38 g total P/4184 kJ (1000 kcal), no added inorganic P and Ca:P 1·55 resulted in a postprandial decrease in plasma P (P = 0·008). Subsequent data indicate that added inorganic P salts in the diet above 0·5 g P/4184 kJ (1000 kcal) cause an increase in plasma P in cats, while diets below this do not. The data presented here demonstrate that sources of added inorganic P salts cause a temporary postprandial increase in plasma P in a dose-dependent manner, prolonged in diets with Ca:P <1·0. Dietary P derived from natural food ingredients (e.g. meat or vegetable matter) does not appear to have any effect on postprandial plasma P.


Assuntos
Ração Animal/análise , Dieta/veterinária , Fósforo na Dieta/sangue , Animais , Gatos , Período Pós-Prandial
16.
PLoS Genet ; 10(9): e1004593, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25187969

RESUMO

The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.


Assuntos
Mucosa Olfatória/patologia , Percepção Olfatória/genética , Receptores Odorantes/genética , Olfato/genética , Transcriptoma/genética , Animais , Feminino , Expressão Gênica/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pseudogenes/genética , Órgão Vomeronasal/fisiologia
17.
BMC Biol ; 14: 12, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878847

RESUMO

BACKGROUND: Olfaction is a fundamental sense through which most animals perceive the external world. The olfactory system detects odors via specialized sensory organs such as the main olfactory epithelium and the vomeronasal organ. Sensory neurons in these organs use G-protein coupled receptors to detect chemosensory stimuli. The odorant receptor (OR) family is expressed in sensory neurons of the main olfactory epithelium, while the adult vomeronasal organ is thought to express other types of receptors. RESULTS: Here, we describe Olfr692, a member of the OR gene family identified by next-generation RNA sequencing, which is highly upregulated and non-canonically expressed in the vomeronasal organ. We show that neurons expressing this gene are activated by odors emanating from pups. Surprisingly, activity in Olfr692-positive cells is sexually dimorphic, being very low in females. Our results also show that juvenile odors activate a large number of Olfr692 vomeronasal neurons in virgin males, which is correlated with the display of infanticide behavior. . In contrast, activity substantially decreases in parenting males (fathers), where infanticidal aggressive behavior is not frequently observed. CONCLUSIONS: Our results describe, for the first time, a sensory neural population with a specific molecular identity involved in the detection of pup odors. Moreover, it is one of the first reports of a group of sensory neurons the activity of which is sexually dimorphic and depends on social status. Our data suggest that the Olfr692 population is involved in mediating pup-oriented behaviors in mice.


Assuntos
Odorantes , Receptores Odorantes/genética , Células Receptoras Sensoriais/metabolismo , Olfato , Órgão Vomeronasal/citologia , Agressão , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes/análise , Receptores Odorantes/análise , Caracteres Sexuais , Órgão Vomeronasal/fisiologia
18.
Chem Senses ; 41(8): 669-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27377750

RESUMO

In rodents, the vomeronasal system controls social and sexual behavior. However, several mechanistic aspects of sensory signaling in the vomeronasal organ remain unclear. Here, we investigate the biophysical basis of a recently proposed vomeronasal signal transduction component-a Ca(2+)-activated Cl(-) current. As the physiological role of such a current is a direct function of the Cl(-) equilibrium potential, we determined the intracellular Cl(-) concentration in dendritic knobs of vomeronasal neurons. Quantitative fluorescence lifetime imaging of a Cl(-)-sensitive dye at the apical surface of the intact vomeronasal neuroepithelium revealed increased cytosolic Cl(-) levels in dendritic knobs, a substantially lower Cl(-) concentration in vomeronasal sustentacular cells, and an apparent Cl(-) gradient in vomeronasal neurons along their dendritic apicobasal axis. Together, our data provide a biophysical basis for sensory signal amplification in vomeronasal neuron microvilli by opening Ca(2+)-activated Cl(-) channels.


Assuntos
Cloretos/análise , Citosol/química , Dendritos/química , Células Receptoras Sensoriais/química , Órgão Vomeronasal/química , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Citosol/metabolismo , Dendritos/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismo
19.
BMC Biol ; 13: 104, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26621367

RESUMO

BACKGROUND: The hormonal state during the estrus cycle or pregnancy produces alterations on female olfactory perception that are accompanied by specific maternal behaviors, but it is unclear how sex hormones act on the olfactory system to enable these sensory changes. RESULTS: Herein, we show that the production of neuronal progenitors is stimulated in the vomeronasal organ (VNO) epithelium of female mice during a late phase of pregnancy. Using a wide range of molecular markers that cover the whole VNO cell maturation process in combination with Ca(2+) imaging in early postmitotic neurons, we show that newly generated VNO cells adopt morphological and functional properties of mature sensory neurons. A fraction of these newly generated cells project their axons to the olfactory forebrain, extend dendrites that contact the VNO lumen, and can detect peptides and urinary proteins shown to contain pheromone activity. High-throughput RNA-sequencing reveals concomitant differences in gene expression in the VNO transcriptomes of pregnant females. These include relative increases in expression of 20 vomeronasal receptors, of which 17 belong to the V1R subfamily, and may therefore be considered as candidate receptors for mediating maternal behaviors. We identify the expression of several hormone receptors in the VNO of which estrogen receptor α (Esr1) is directly localized to neural progenitors. Administration of sustained high levels of estrogen, but not progesterone, is sufficient to stimulate vomeronasal progenitor cell proliferation in the VNO epithelium. CONCLUSIONS: Peripheral olfactory neurogenesis driven by estrogen may contribute to modulate sensory perception and adaptive VNO-dependent behaviors during pregnancy and early motherhood.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Neurogênese , Órgão Vomeronasal/fisiologia , Animais , Proliferação de Células , Feminino , Camundongos , Células-Tronco Neurais/fisiologia , Gravidez , Órgão Vomeronasal/crescimento & desenvolvimento
20.
PLoS Genet ; 8(11): e1003022, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166506

RESUMO

Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm)) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm) embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm) embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.


Assuntos
Centríolos , Nanismo , Desenvolvimento Embrionário/genética , Microcefalia , Proteínas Associadas aos Microtúbulos/genética , Animais , Apoptose , Centríolos/genética , Centríolos/metabolismo , Dano ao DNA , Nanismo/genética , Nanismo/fisiopatologia , Fácies , Instabilidade Genômica , Camundongos , Camundongos Transgênicos , Microcefalia/genética , Microcefalia/fisiopatologia , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/genética , Mutação , Transdução de Sinais/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa