Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076131

RESUMO

Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways. Here, we describe an ER-to-lysosome-associated degradation pathway (ERLAD) for proteasome-resistant polymers of alpha1-antitrypsin Z (ATZ). ERLAD involves the ER-chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER-resident ER-phagy receptor FAM134B, echoing the initiation of starvation-induced, receptor-mediated ER-phagy. However, in striking contrast to ER-phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7-positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single-membrane, ER-derived, ATZ-containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER-resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/genética , Proteólise , alfa 1-Antitripsina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Calnexina/genética , Calnexina/metabolismo , Retículo Endoplasmático/genética , Endossomos/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , alfa 1-Antitripsina/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
2.
Prog Mol Subcell Biol ; 59: 99-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050863

RESUMO

The endoplasmic reticulum (ER) is a biosynthetic organelle in eukaryotic cells. Its capacity to produce proteins, lipids and oligosaccharides responds to physiologic and pathologic demand. The transcriptional and translational unfolded protein response (UPR) programs increase ER size and activity. In contrast, ER-phagy programs in all their flavors select ER subdomains for lysosomal clearance. These programs are activated by nutrient deprivation, accumulation of excess ER (recov-ER-phagy), production of misfolded proteins that cannot be degraded by ER-associated degradation and that are removed from cells by the so-called ER-to-lysosome-associated degradation (ERLAD). Selection of ER subdomains to be cleared from cells relies on ER-phagy receptors, a class of membrane-bound proteins displaying cytosolic domains that engage the cytosolic ubiquitin-like protein LC3. Mechanistically, ER clearance proceeds via macro-ER-phagy, micro-ER-phagy and LC3-regulated vesicular delivery.


Assuntos
Autofagia , Retículo Endoplasmático , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Lisossomos/genética , Lisossomos/metabolismo , Resposta a Proteínas não Dobradas/genética
3.
Biochem Soc Trans ; 46(3): 699-706, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802216

RESUMO

The endoplasmic reticulum (ER) is the site of protein, lipid, phospholipid, steroid and oligosaccharide synthesis and modification, calcium ion storage, and detoxification of endogenous and exogenous products. Its volume (and activity) must be maintained under normal growth conditions, must be expanded in a controlled manner on activation of ER stress programs and must be reduced to pre-stress size during the recovery phase that follows ER stress termination. ER-phagy is the constitutive or regulated fragmentation and delivery of ER fragments to lysosomal compartments for clearance. It gives essential contribution to the maintenance of cellular homeostasis, proteostasis, lipidostasis and oligosaccharidostasis (i.e. the capacity to produce the proteome, lipidome and oligosaccharidome in appropriate quality and quantity). ER turnover is activated on ER stress, nutrient deprivation, accumulation of misfolded polypeptides, pathogen attack and by activators of macroautophagy. The selectivity of these poorly characterized catabolic pathways is ensured by proteins displayed at the limiting membrane of the ER subdomain to be removed from cells. These proteins are defined as ER-phagy receptors and engage the cytosolic macroautophagy machinery via specific modules that associate with ubiquitin-like, cytosolic proteins of the Atg8/LC3/GABARAP family. In this review, we give an overview on selective ER turnover and on the yeast and mammalian ER-phagy receptors identified so far.


Assuntos
Autofagia , Retículo Endoplasmático/fisiologia , Animais , Estresse do Retículo Endoplasmático , Homeostase
4.
Sci Adv ; 8(17): eabl5394, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486722

RESUMO

Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity. Our platform provides a detailed picture by testing every antigen-derived peptide and is scalable to all the MHC II alleles. Given the urgent need to understand immune evasion for formulating effective responses to threats such as SARS-CoV-2, we provide a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of several HLA class II alleles. We show that several mutations arising in viral strains expanding globally resulted in reduced peptide presentability by multiple HLA class II alleles, while some increased it, suggesting alteration of MHC II presentation landscapes as a possible immune escape mechanism.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe II , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/genética , Mamíferos , Peptídeos , SARS-CoV-2
5.
Autophagy ; 16(2): 385-386, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961258

RESUMO

Physiological and pathological stresses may cause swelling of the endoplasmic reticulum (ER), a biosynthetic organelle in eukaryotic cells. Upon conclusion of the stress, ER size and content return to physiological levels. The translocon component SEC62 decorates the portions of excess ER that must be cleared from cells. Our recent paper highlights the role of endosomal sorting complex required for transport (ESCRT)-III-driven micro-ER-phagy in ER remodeling during cell recovery from ER stress.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos
6.
FEBS J ; 287(21): 4612-4640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32133789

RESUMO

In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Transporte Proteico , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Especificidade por Substrato
7.
Nat Commun ; 10(1): 5058, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699981

RESUMO

The endoplasmic reticulum (ER) produces about 40% of the nucleated cell's proteome. ER size and content in molecular chaperones increase upon physiologic and pathologic stresses on activation of unfolded protein responses (UPR). On stress resolution, the mammalian ER is remodeled to pre-stress, physiologic size and function on activation of the LC3-binding activity of the translocon component SEC62. This elicits recov-ER-phagy, i.e., the delivery of the excess ER generated during the phase of stress to endolysosomes (EL) for clearance. Here, ultrastructural and genetic analyses reveal that recov-ER-phagy entails the LC3 lipidation machinery and proceeds via piecemeal micro-ER-phagy, where RAB7/LAMP1-positive EL directly engulf excess ER in processes that rely on the Endosomal Sorting Complex Required for Transport (ESCRT)-III component CHMP4B and the accessory AAA+ ATPase VPS4A. Thus, ESCRT-III-driven micro-ER-phagy emerges as a key catabolic pathway activated to remodel the mammalian ER on recovery from ER stress.


Assuntos
Autofagia/fisiologia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Resposta a Proteínas não Dobradas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Autofagossomos/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas SNARE/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
Mol Cell Oncol ; 4(2): e1264351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401179

RESUMO

Amplification of the candidate oncogene TLOC1/SEC62 in tumors correlates with reduced patient survival. The recently reported role of SEC62 as an autophagy receptor that controls endoplasmic reticulum (ER) size and function might open new scenarios for understanding the phenotypes and treat SEC62high tumors, which are characterized by high ER stress tolerance.

9.
Nat Cell Biol ; 18(11): 1173-1184, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27749824

RESUMO

The endoplasmic reticulum (ER) is a site of protein biogenesis in eukaryotic cells. Perturbing ER homeostasis activates stress programs collectively called the unfolded protein response (UPR). The UPR enhances production of ER-resident chaperones and enzymes to reduce the burden of misfolded proteins. On resolution of ER stress, ill-defined, selective autophagic programs remove excess ER components. Here we identify Sec62, a constituent of the translocon complex regulating protein import in the mammalian ER, as an ER-resident autophagy receptor. Sec62 intervenes during recovery from ER stress to selectively deliver ER components to the autolysosomal system for clearance in a series of events that we name recovER-phagy. Sec62 contains a conserved LC3-interacting region in the C-terminal cytosolic domain that is required for its function in recovER-phagy, but is dispensable for its function in the protein translocation machinery. Our results identify Sec62 as a critical molecular component in maintenance and recovery of ER homeostasis.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Autofagia , Homeostase , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa