Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 598(7880): 332-337, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616040

RESUMO

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Assuntos
Bacteroides/enzimologia , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatases/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animais , Colo/química , Cristalografia por Raios X , Feminino , Galactose/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Especificidade por Substrato , Sulfatases/química
2.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35710619

RESUMO

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Assuntos
Microbioma Gastrointestinal , Sulfatases , Bactérias/metabolismo , Humanos , Polissacarídeos/química , Sulfatases/química , Sulfatos/química
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619096

RESUMO

The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , DNA/química , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
4.
J Biol Chem ; 298(11): 102505, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126773

RESUMO

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Humanos , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Ligação Proteica
5.
Biochem J ; 478(4): 735-748, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33480417

RESUMO

Sulfated carbohydrate metabolism is a fundamental process, which occurs in all domains of life. Carbohydrate sulfatases are enzymes that remove sulfate groups from carbohydrates and are essential to the depolymerisation of complex polysaccharides. Despite their biological importance, carbohydrate sulfatases are poorly studied and challenges remain in accurately assessing the enzymatic activity, specificity and kinetic parameters. Most notably, the separation of desulfated products from sulfated substrates is currently a time-consuming process. In this paper, we describe the development of rapid capillary electrophoresis coupled to substrate fluorescence detection as a high-throughput and facile means of analysing carbohydrate sulfatase activity. The approach has utility for the determination of both kinetic and inhibition parameters and is based on existing microfluidic technology coupled to a new synthetic fluorescent 6S-GlcNAc carbohydrate substrate. Furthermore, we compare this technique, in terms of both time and resources, to high-performance anion exchange chromatography and NMR-based methods, which are the two current 'gold standards' for enzymatic carbohydrate sulfation analysis. Our study clearly demonstrates the advantages of mobility shift assays for the quantification of near real-time carbohydrate desulfation by purified sulfatases, and will support the search for small molecule inhibitors of these disease-associated enzymes.


Assuntos
Eletroforese Capilar/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Sulfotransferases/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/antagonistas & inibidores , Bacteroides thetaiotaomicron/enzimologia , Compostos de Boro/análise , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Sistemas Computacionais , Corantes Fluorescentes/análise , Glicosaminoglicanos/metabolismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/análise , Especificidade por Substrato , Sulfotransferases/antagonistas & inibidores
6.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500644

RESUMO

The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.


Assuntos
Glicosaminoglicanos/química , Polissacarídeos/química , Animais , Anticoagulantes/química , Heparina/química , Humanos , Relação Estrutura-Atividade
9.
Aust J Rural Health ; 23(3): 136-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25615954

RESUMO

OBJECTIVE: We investigated patient perceptions of a virtual preoperative anaesthesia evaluation clinic linking Royal Darwin Hospital to Katherine Hospital. DESIGN: Descriptive study, cross-sectional survey. SETTING: Regional and rural areas of Northern Territory, Australia. PARTICIPANTS: Sample includes 27 respondents, five Indigenous, 18 non-Indigenous and four unknown. INTERVENTIONS: Introduction of a preoperative anaesthesia evaluation clinic. MAIN OUTCOME MEASURES: We designed a 10-item, 5-point Likert scale questionnaire assessing patient perceptions in four domains: (i) technical quality; (ii) perceived efficacy; (iii) affective patient experience; and (iv) patient preference. Qualitative responses are also reported. RESULTS: Twenty-seven out of 35 patients (77%) completed the questionnaire. Ninety-eight per cent were in positive agreement on technical quality with a mean score of 1.35 (SD: 0.53); Ninety-five per cent on perceived efficacy, 1.35 (SD: 0.65); Eighty-four per cent in negative agreement on affective patient experience (negative perception item), 4.19 (SD: 1.07); Eighty-one per cent in negative agreement on patient preference (negative perception item), 4.23 (SD: 1.14). There were no significant differences in the answers between Indigenous (five patients) and non-Indigenous patients (18 patients). CONCLUSION: Our study confirms the acceptability of telemedicine in the remote assessment of preoperative patients in the Northern Territory, with positive perceptions in all four domains.


Assuntos
Instituições de Assistência Ambulatorial , Anestésicos , Conhecimentos, Atitudes e Prática em Saúde , Pacientes/psicologia , Período Pré-Operatório , Telemedicina , Estudos Transversais , Serviços de Saúde do Indígena , Humanos , Northern Territory , Inquéritos e Questionários
10.
Nat Commun ; 14(1): 7072, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923737

RESUMO

Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.


Assuntos
DNA Viral , Spumavirus , DNA Viral/metabolismo , Integrases/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Spumavirus/genética , Spumavirus/metabolismo , DNA Complementar , Integração Viral
11.
RSC Adv ; 12(18): 11075-11083, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425031

RESUMO

Complex glycans are ubiquitous in nature and essential to life. Despite their diverse roles, however, only a fraction of their potential chemical space has been explored. New regions of this chemical space can, nevertheless, be accessed by generating structures that do not occur in nature or by modifying naturally-occurring polysaccharide structures - collectively, termed new polysaccharides (NPs). Two synthetic routes to NPs are described; the de novo route, directly from monosaccharide starting materials and the functionalization route, involving glycosylation of existing polysaccharides. The reaction involves a simple condensation step under microwave heating, catalysed by environmentally benign organic acids and is illustrated by the generation of structures with biological activities ranging from cell signalling and inhibition of bacterial growth, to mimicking carbohydrate antigens of pathogenic microorganisms. The method is as applicable to fine chemicals as it is to industrial waste, for example, biotechnologically-derived d-allulose (d-psicose), or the waste products of biofermentation. Accessing this chemical space unlocks new functionalities, generating complex glycans with applications in the biological, medical, biotechnological and materials science arenas.

12.
Nat Commun ; 13(1): 5808, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192430

RESUMO

Highly conserved MutS and MutL homologs operate as protein dimers in mismatch repair (MMR). MutS recognizes mismatched nucleotides forming ATP-bound sliding clamps, which subsequently load MutL sliding clamps that coordinate MMR excision. Several MMR models envision static MutS-MutL complexes bound to mismatched DNA via a positively charged cleft (PCC) located on the MutL N-terminal domains (NTD). We show MutL-DNA binding is undetectable in physiological conditions. Instead, MutS sliding clamps exploit the PCC to position a MutL NTD on the DNA backbone, likely enabling diffusion-mediated wrapping of the remaining MutL domains around the DNA. The resulting MutL sliding clamp enhances MutH endonuclease and UvrD helicase activities on the DNA, which also engage the PCC during strand-specific incision/excision. These MutS clamp-loader progressions are significantly different from the replication clamp-loaders that attach the polymerase processivity factors ß-clamp/PCNA to DNA, highlighting the breadth of mechanisms for stably linking crucial genome maintenance proteins onto DNA.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Reparo do DNA , Endonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Nucleotídeos , Antígeno Nuclear de Célula em Proliferação/metabolismo
13.
Phys Rev E ; 103(5-1): 052404, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134264

RESUMO

Protein complexes involved in DNA mismatch repair diffuse along dsDNA as sliding clamps in order to locate a hemimethylated incision site. They have been observed to use a dissociative mechanism, in which two proteins, while continuously remaining attached to the DNA, sometimes associate into a single complex sliding on the DNA and sometimes dissociate into two independently sliding proteins. Here, we study the probability that these complexes locate a given target site via a semi-analytic, Monte Carlo calculation that tracks the association and dissociation of the sliding complexes. We compare such probabilities to those obtained using a nondissociative diffusive scan in the space of physically realistic diffusion constants, hemimethylated site distances, and total search times to determine the regions in which dissociative searching is more or less efficient than nondissociative searching. We conclude that the dissociative search mechanism is advantageous in the majority of the physically realistic parameter space, suggesting that the dissociative search mechanism confers an evolutionary advantage.


Assuntos
Reparo de Erro de Pareamento de DNA , Difusão
14.
Carbohydr Res ; 499: 108225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33353664

RESUMO

The formation of ß-glucuronides is a major route by which mammals detoxify and remove breakdown products, such as l-tyrosine, as well as many xenobiotics, from their systems. In humans, dietary l-tyrosine is broken down largely by the action of the anaerobic gut bacterium C. difficile to p-cresol, providing a competitive advantage in the gut microbiota. Ortho- (o-) and meta- (m-), cresols, also present in the environment, may share a common degradative pathway. Relatively little work has been done on cresyl glucuronides. Here, a direct synthesis of o-, m-, and p-cresyl ß-D-glucuronides from methyl 1,2,3,4 tetra-O-acetyl-ß-d-glucuronate and the respective cresol employing trimethylsilyltriflate as promoter is presented. The protected intermediates were hydrolysed using aqueous sodium carbonate to yield the cresyl ß-glucuronides. The toxicities of the o-, m- and p-cresyl ß-D-glucuronides were compared. All three were less toxic to HEK293 cells than their respective cresol precursors: toxicity followed the order o < m < p for Na+ salts and o < p < m for Ca2+ salts. The m-cresyl-glucuronide Ca2+ salt and p-cresyl-glucuronide Na+ salt reduced colony formation by 11% and 9% (v. 30% reduction from the aglycone) respectively, whereas o-cresyl-glucuronide (both Na+ and Ca2+ salts), mildly stimulated HEK293 cell growth.


Assuntos
Cresóis/farmacologia , Glucuronídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cresóis/síntese química , Cresóis/química , Relação Dose-Resposta a Droga , Glucuronídeos/síntese química , Glucuronídeos/química , Células HEK293 , Humanos , Estrutura Molecular , Estereoisomerismo
15.
Nat Commun ; 10(1): 5294, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757945

RESUMO

A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL-EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL-EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH-GATC incisions.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Proteínas MutL/fisiologia , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Fluorescência , Proteínas MutL/metabolismo , Imagem Individual de Molécula
16.
Carbohydr Polym ; 222: 115031, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320064

RESUMO

The detailed structure of a further Chondroitin Sulfate from Litopenaeus vannamei shrimp (sCS) is described. The backbone structure was established by 1H/13C NMR, which identified 3-O-sulfated GlcA, 4-O-sulfated GalNAc, 6-O-sulfated GalNAc, and 4,6-di-O-sulfated GalNAc residues. GlcA is linked to GalNAc 4,6 di S and GlcA 3S is linked to GalNAc 4S, GalNAc 4,6 di-S and GalNAc6S residues. The anticoagulant properties of this sCS were evaluated by activated partial thromboplastin time, anti-IIa, anti-Xa and anti-heparin cofactor II-mediated activities, and sCS failed to stabilise antithrombin in a fluoresence shift assay. The anti-inflammatory effect of sCS was explored using a model of acute peritonitis, followed by leukocyte count and measurement of the cytokines, IL-1ß, IL-6 and TNF-α. The compound showed low clotting effects, but high anti-IIa activity and HCII-mediated thrombin inhibition. Its anti-inflammatory effect was shown by leukocyte recruitment inhibition and a decrease in pro-inflammatory cytokine levels. Although the biological role of sCS remains unknown, its properties indicate that it is suitable for studies of multi-potent molecules obtained from natural sources.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antitrombinas/uso terapêutico , Sulfatos de Condroitina/uso terapêutico , Inflamação/tratamento farmacológico , Penaeidae/química , Peritonite/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antitrombinas/química , Antitrombinas/isolamento & purificação , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Citocinas/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Óxido Nítrico/metabolismo , Peritonite/induzido quimicamente , Células RAW 264.7 , Ratos Wistar
17.
Front Microbiol ; 9: 3107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619186

RESUMO

HIV-1 infection can be successfully controlled with anti-retroviral therapy (ART), but is not cured. A reservoir of cells harboring transcriptionally silent integrated provirus is able to reestablish replicating infection if ART is stopped. Latently HIV-1 infected cells are rare, but may persist for decades. Several novel strategies have been proposed to reduce the latent reservoir, including DNA sequence targeted CRISPR/Cas9 genome editing of the HIV-1 provirus. A significant challenge to genome editing is the sequence diversity of HIV-1 quasispecies present in patients. The high level of quasispecies diversity will require targeting of multiple sites in the viral genome and personalized engineering of a CRISPR/Cas9 regimen. The challenges of CRISPR/Cas9 delivery to the rare latently infected cells and quasispecies sequence diversity suggest that effective genome editing of every provirus is unlikely. However, recent evidence from post-treatment controllers, patients with controlled HIV-1 viral burden following interruption of ART, suggests a correlation between a reduced number of intact proviral sequences and control of the virus. The possibility of reducing the intact proviral sequences in patients by a genome editing technology remains intriguing, but requires significant advances in delivery to infected cells and identification of effective target sites.

18.
BMJ Case Rep ; 20142014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25535233

RESUMO

Extravasation occurs frequently with intravenous infusions. In this case report we describe the occurrence of epidermal detachment and multiple cutaneous bullous eruptions in a patient's forearm following the extravasation of hydroxyethyl starch (Voluven, Fresenius Kabi)-a colloid solution derived from corn starch, which is used to replace lost blood volume. The patient's affected body surface area was managed under the direction of our plastic surgical team. Despite a prolonged admission in hospital from other perioperative complications, he made a full recovery and was successfully discharged home. The probable pathogenesis relevant to extravasation of Voluven is discussed; as well as its management principles.


Assuntos
Epiderme/patologia , Derivados de Hidroxietil Amido/efeitos adversos , Dermatopatias/etiologia , Idoso , Volume Sanguíneo , Antebraço , Humanos , Derivados de Hidroxietil Amido/administração & dosagem , Infusões Intravenosas/efeitos adversos , Masculino , Dermatopatias Vesiculobolhosas/etiologia
19.
Radiology ; 226(3): 723-30, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12616019

RESUMO

PURPOSE: To simultaneously differentiate stunned, infarcted, and normal myocardial regions by using gadolinium-enhanced cine magnetic resonance (MR) imaging with magnetization transfer contrast. MATERIALS AND METHODS: Twelve dogs were imaged on days 1 and 8 after transient 90-minute coronary artery occlusion. A magnetization transfer contrast with echo-train readout (MTET) MR sequence was performed before and 30 minutes after gadolinium contrast enhancement. Ex vivo analysis consisted of MR imaging, microsphere blood flow analysis, and triphenyltetrazolium chloride (TTC) staining. A paired two-tailed t test was used to compare wall thickening from day 1 to day 8. Linear regression and Bland-Altman analyses were used to compare infarct size depicted with MTET imaging with that seen on TTC-stained tissue. RESULTS: Severe wall motion abnormalities were detected in all dogs. At TTC analysis, seven dogs had evidence of myocardial infarction and five had evidence of stunned myocardium. The mean percentages of left ventricular wall thickening in infarcted, stunned, and remote myocardial regions were 2% +/- 4 (SD), 4% +/- 8, and 33% +/- 5, respectively. Wall thickening did not improve in the infarcted zones, but it improved to nearly normal levels in the stunned region 1 week after induced occlusion (mean, 40% +/- 8; P <.02). MTET images clearly depicted infarcted myocardium as brighter than both the normal and stunned myocardial regions but darker than the blood pool. In vivo MTET infarct volume correlated with ex vivo TTC analysis data (y = 1.01x + 0.00, R = 0.98, standard error of the estimate = 0.019). CONCLUSION: One day after myocardial ischemia, MTET during one MR imaging examination enabled simultaneous differentiation of infarcted, stunned, and normal myocardial regions on the basis of gadolinium enhancement and regional function.


Assuntos
Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Miocárdio Atordoado/diagnóstico , Miocárdio/patologia , Animais , Meios de Contraste , Diagnóstico Diferencial , Cães , Gadolínio DTPA , Modelos Lineares , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio Atordoado/patologia , Miocárdio Atordoado/fisiopatologia
20.
Magn Reson Med ; 47(3): 482-91, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11870835

RESUMO

The purpose of this study was to validate a first-pass MRI method for imaging myocardial perfusion with multislice coverage and relatively small analyzable regions of interest (ROIs). A fast gradient-echo (FGRE) sequence with an echo-train (ET) readout was used to achieve multislice coverage, and a high dose of a contrast agent (CA) was used to achieve a high signal-to-noise ratio (SNR). Dogs (N = 6) were studied 1 day after reperfused myocardial infarction, and fluorescent microspheres were used as a standard for perfusion. First-pass MRI correlated well vs. microsphere flow, achieving mean R values of 0.87 (range = 0.82-0.93), 0.71 (range = 0.46-0.85), and 0.72 (range = 0.49-0.95) for subendocardial ROIs, transmural ROIs, and the endocardial-epicardial ratio, respectively. Additionally, analysis of myocardial time-intensity curves (TICs) indicated that 15.8 +/- 6 sectors, corresponding to 260 microl of endocardium, can be analyzed (R(2) > 0.95).


Assuntos
Imagem Ecoplanar/métodos , Infarto do Miocárdio/patologia , Animais , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Circulação Coronária , Cães , Gadolínio DTPA , Microesferas , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa