Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 111890, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547772

RESUMO

The diverse beneficial effects of adiponectin-receptor signaling, including its impact on the regulation of inflammatory processes in vivo, have resulted in development of adiponectin receptor agonists as a treatment for metabolic disorders. However, there are no established non-invasive bioassays for detection of adiponectin target engagement in humans or animal models. Here, we designed an assay using small amounts of blood to assess adiponectin action. Specifically, we tested effects of the small 10-amino acid peptide adiponectin receptor agonist, ALY688, in a sublethal LPS endotoxemia model in mice. LPS-induced pro-inflammatory cytokine levels in serum were significantly reduced in mice treated with ALY688, assessed via multiplex ELISA in flow cytometry. Furthermore, ALY688 alone significantly induced TGF-ß release in serum 1 h after treatment and was elevated for up to 24 h. Additionally, using a flow-cytometry panel for detection of changes in circulating immune cell phenotypes, we observed a significant increase in absolute T cell counts in mice after ALY688 treatment. To assess changes in intracellular signaling effectors downstream of adiponectin, phospho-flow cytometry was conducted. There was a significant increase in phosphorylation of AMPK and p38-MAPK in mice after ALY688 treatment. We then used human donor immune cells (PBMCs) treated with ALY688 ex vivo and observed elevation of AMPK and p38-MAPK phosphorylation from baseline in response to ALY688. Together, these results indicate we can detect adiponectin action on immune cells in vivo by assessing adiponectin signaling pathway for AMPK and p38-MAPK, as well as pro-inflammatory cytokine levels. This new approach provides a blood-based bioassay for screening adiponectin action.


Assuntos
Adiponectina , Citocinas , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Animais , Adiponectina/sangue , Adiponectina/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Masculino , Citocinas/metabolismo , Citocinas/sangue , Bioensaio/métodos , Endotoxemia/imunologia , Endotoxemia/metabolismo , Receptores de Adiponectina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças , Feminino
2.
Clin Transl Sci ; 17(3): e13758, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515365

RESUMO

Strategies to enhance autophagy flux have been suggested to improve outcomes in cardiac ischemic models. We explored the role of adiponectin in mediating cardiac autophagy under ischemic conditions induced by permanent coronary artery ligation. We studied the molecular mechanisms underlying adiponectin's cardio-protective effects in adiponectin knockout (Ad-KO) compared with wild-type (WT) mice subjected to ischemia by coronary artery ligation and H9c2 cardiomyocyte cell line exposed to hypoxia. Systemic infusion of a cathepsin-B activatable near-infrared probe as a biomarker for autophagy and detection via noninvasive three-dimensional fluorescence molecular tomography combined with computerized tomography to quantitate temporal changes, indicated increased activity in the myocardium of WT mice after myocardial infarction which was attenuated in Ad-KO. Seven days of ischemia increased myocardial adiponectin accumulation and elevated ULK1/AMPK phosphorylation and autophagy assessed by Western blotting for LC3 and p62, an outcome not observed in Ad-KO mice. Cell death, assessed by TUNEL analysis and the ratio of Bcl-2:Bax, plus cardiac dysfunction, measured using echocardiography with strain analysis, were exacerbated in Ad-KO mice. Using cellular models, we observed that adiponectin stimulated autophagy flux in isolated primary adult cardiomyocytes and increased basal and hypoxia-induced autophagy in H9c2 cells. Real-time temporal analysis of caspase-3/7 activation and caspase-3 Western blot indicated that adiponectin suppressed activation by hypoxia. Hypoxia-induced mitochondrial reactive oxygen species production and cell death were also attenuated by adiponectin. Importantly, the ability of adiponectin to reduce caspase-3/7 activation and cell death was not observed in autophagy-deficient cells generated by CRISPR-mediated deletion of Atg7. Collectively, our data indicate that adiponectin acts in an autophagy-dependent manner to attenuate cardiomyocyte caspase-3/7 activation and cell death in response to hypoxia in vitro and ischemia in mice.


Assuntos
Adiponectina , Cardiopatias , Camundongos , Animais , Adiponectina/genética , Adiponectina/metabolismo , Adiponectina/farmacologia , Caspase 3/metabolismo , Camundongos Knockout , Miócitos Cardíacos , Autofagia , Isquemia/metabolismo , Hipóxia , Cardiopatias/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa