Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2305712120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812723

RESUMO

Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.


Assuntos
Adenilato Quinase , Infertilidade , Sêmen , Animais , Bovinos , Feminino , Masculino , Camundongos , Gravidez , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Fertilidade , Mamíferos , Sêmen/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
2.
BMC Genomics ; 23(1): 379, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585482

RESUMO

BACKGROUND: Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. RESULTS: The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of - 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. CONCLUSION: This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development.


Assuntos
Metilação de DNA , Análise do Sêmen , Animais , Bovinos , Desenvolvimento Embrionário/genética , Feminino , Fertilidade/genética , Masculino , Gravidez , Espermatozoides/metabolismo
3.
Biol Reprod ; 106(3): 487-502, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34792096

RESUMO

Conceptus secretory factors include galectins, a family of carbohydrate binding proteins that elicit cell adhesion and immune suppression by interacting with intracellular and extracellular glycans. In rodents, galectin-1 (LGALS1) promotes maternal-fetal immune tolerance in the decidua through expansion of tolerogenic cluster of differentiation 11c (CD11c) positive dendritic cells, increased anti-inflammatory interleukin (IL)-10, and activation of forkhead box P3 (FOXP3) positive regulatory T cells (Treg). This study characterized galectin expression in early ruminant conceptuses and endometrium. We also tested the effect of recombinant bovine LGALS1 (rbLGALS1) and progesterone (P4) on endometrial expression of genes and protein related to maternal-conceptus immune tolerance in cattle. Elongating bovine and ovine conceptuses expressed several galectins, particularly, LGALS1, LGALS3, and LGALS8. Within bovine endometrium, expression of LGALS3, LGALS7, and LGALS9 was greater on Day 16 of pregnancy compared to the estrous cycle. Within ovine endometrium, LGALS7 was greater during pregnancy compared to the estrous cycle and endometrium of pregnant sheep tended to have greater LGALS9 and LGALS15. Expression of endometrial LGALS4 was less during pregnancy in sheep. Treating bovine endometrium with rbLGALS1 increased endometrial expression of CD11c, IL-10, and FOXP3, within 24 h. Specifically, within caruncular endometrium, both rbLGALS1 and P4 increased FOXP3, suggesting that both ligands may promote Treg expansion. Using IHC, FOXP3+ cells with a leukocyte phenotype were localized to the bovine uterine stratum compactum near the uterine surface and increased in response to rbLGALS1. We hypothesize that galectins have important functions during establishment of pregnancy in ruminants and bovine conceptus LGALS1 and luteal P4 confer mechanisms of maternal-conceptus immune tolerance in cattle.


Assuntos
Galectina 1 , Prenhez , Animais , Bovinos , Endométrio/metabolismo , Feminino , Fatores de Transcrição Forkhead , Galectina 1/genética , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/genética , Galectinas/metabolismo , Tolerância Imunológica , Gravidez , Ovinos
4.
Biol Reprod ; 104(5): 1022-1033, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590828

RESUMO

Reproductive efficiency in livestock is a major driver of sustainable food production. The poorly understood process of ruminant conceptus elongation (a) prerequisites maternal pregnancy recognition, (b) is essential to successful pregnancy establishment, and (c) coincides with a period of significant conceptus mortality. Conceptuses at five key developmental stages between Days 8-16 were recovered and cultured in vitro for 6 h prior to conditioned media analysis by untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. This global temporal biochemical interrogation of the ex situ bovine conceptus unearths two antithetical stage-specific metabolic phenotypes during tubular (metabolically retentive) vs. filamentous (secretory) development. Moreover, the retentive conceptus phenotype on Day 14 coincides with an established period of elevated metabolic density in the uterine fluid of heifers with high systemic progesterone-a model of accelerated conceptus elongation. These data, combined, suggest a metabolic mechanism underpinning conceptus elongation, thereby enhancing our understanding of the biochemical reciprocity of maternal-conceptus communication, prior to maternal pregnancy recognition.


Assuntos
Criação de Animais Domésticos , Bovinos/fisiologia , Embrião de Mamíferos/metabolismo , Metaboloma , Fenótipo , Prenhez , Animais , Feminino , Metabolômica , Gravidez , Progesterona/metabolismo
5.
Biol Reprod ; 104(3): 669-683, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330929

RESUMO

Bovine endometrium consists of epithelial and stromal cells that respond to conceptus interferon tau (IFNT), the maternal recognition of pregnancy (MRP) signal, by increasing expression of IFN-stimulated genes (ISGs). Endometrial epithelial and stromal-cell-specific ISGs are largely unknown but hypothesized to have essential functions during pregnancy establishment. Bovine endometrial epithelial cells were cultured in inserts above stromal fibroblast (SF) cells for 6 h in medium alone or with IFNT. The epithelial and SF transcriptomic response was analyzed separately using RNA sequencing and compared to a list of 369 DEGs recently identified in intact bovine endometrium in response to elongating bovine conceptuses and IFNT. Bovine endometrial epithelial and SF shared 223 and 70 DEGs in common with the list of 369 endometrial DEGs. Well-known ISGs identified in the epithelial and SF were ISG15, MX1, MX2, and OAS2. DEGs identified in the epithelial but not SF included a number of IRF molecules (IRF1, IRF2, IRF3, and IRF8), mitochondria SLC transporters (SLC25A19, SLC25A28, and SLC25A30), and a ghrelin receptor. Expression of ZC3HAV1, an anti-retroviral gene, increased specifically within the SF. Gene ontology analysis identified the type I IFN signaling pathway and activation of nuclear factor kappa B transcription factors as biological processes associated with the epithelial cell DEGs. This study has identified biologically relevant IFNT-stimulated genes within specific endometrial cell types. The findings provide critical information regarding the effects of conceptus IFNT on specific endometrial compartments during early developmental processes in cattle.


Assuntos
Bovinos/fisiologia , Implantação do Embrião/fisiologia , Endométrio/citologia , Células Epiteliais/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Células Estromais/fisiologia , Animais , Técnicas de Cocultura , Embrião de Mamíferos/fisiologia , Feminino , Fibroblastos , Regulação da Expressão Gênica/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Grelina , Ovinos , Transcriptoma
6.
Reproduction ; 162(3): 209-225, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34255737

RESUMO

Ovulation has been described as an inflammatory event, characterized by an influx of leukocytes into the ovulatory follicle and changes in the expression profile of immune factors in both the theca and granulosa tissue layers. Since information on this process is limited in cattle, our objective was to elucidate the contribution of the immune system to dominant follicle luteinization, ovulation and corpus luteum (CL) formation in cattle. Beef heifers (n = 50) were oestrous synchronized, slaughtered and ovarian follicular or luteal tissue collected during a 96 h window around ovulation. Follicular fluid cytokine concentration, temporal immune cell infiltration and inflammatory status were determined by Luminex multiplex analysis, immunohistochemistry and quantitative real-time PCR-analysis, respectively, in pre- and peri-ovulatory follicular tissues. The concentrations of IL10 and VEGF-A were highest in pre-ovulatory and the concentration of CXCL10 was highest in peri-ovulatory follicular fluid samples. The pre and peri-ovulatory follicles play host to a broad repertoire of immune cells, including T-cells, granulocytes and monocytes. Dendritic cells were the most abundant cells in ovulatory follicular and luteal-tissue at all times. The mRNA expression of candidate genes associated with inflammation was highest in pre- and peri-ovulatory tissue, whereas tissue growth and modelling factors were highest in the post-ovulatory follicular and early luteal tissue. In conclusion, ovulation in cattle is characterized by the presence of neutrophils, macrophages and dendritic cells in the ovulatory follicle, reflected in compartmentalized cytokine and growth factor expression. These findings indicate a tightly regulated sterile inflammatory response to the LH surge in the ovulatory follicle which is rapidly resolved in advance of CL formation.


Assuntos
Folículo Ovariano , Ovulação , Animais , Bovinos , Corpo Lúteo/fisiologia , Feminino , Luteinização , Folículo Ovariano/fisiologia , Ovário , Ovulação/fisiologia
7.
Mol Reprod Dev ; 88(10): 694-704, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596291

RESUMO

Regulation of the mammalian embryo involves cell-signaling molecules produced by the maternal oviduct and endometrium. Here, datasets on the transcriptome of the gestational Days 5 and 6 bovine morula and Day 5 maternal endometrium were examined to identify receptor genes expressed by the morula and expression of the corresponding ligand-related genes in the endometrium. A total of 175 receptor genes were identified in the morula, including 48 encoding for growth factors or WNT signaling molecules, 25 for cytokines and chemokines, 35 involved in juxtacrine and matricellular signaling and 25 encoding for receptors for small molecules. Some of the highly-expressed pairs of endometrial ligand and embryo receptor genes included MDK and its receptors ITGB1, SDC4 and LRP2, WNT5A (RYK), VEGFA (ITGB1), GPI (AMFR), and the hedgehog proteins IHH and DHH (HHIP). The most highly expressed receptors for small molecules were GPRC5C (retinoic acid receptor), PGRMC1 (progesterone), and CHRNB2 (acetylcholine). There were also 84 genes encoding for cell signaling ligands expressed by the morula, with the most highly expressed being GPI, AIMP1, TIMP1, IK, and CCN2. The atlas of receptor and ligand genes should prove useful for understanding details of the communication between the embryo and mother that underlies optimal embryonic development.


Assuntos
Endométrio , Proteínas Hedgehog , Animais , Bovinos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Ligantes , Mamíferos , Proteínas de Membrana/metabolismo , Mórula , Gravidez , Receptores de Progesterona/metabolismo
8.
J Dairy Sci ; 104(1): 1087-1098, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189280

RESUMO

Cervicovaginal mucus is a mixture of mucins, ions, salts, and water, the proportions of which change during the reproductive cycle. It is suspected that this mucus emits an important volatile signal indicative of the reproductive state of the female. The objective of this study was to identify volatile organic compounds (VOC) in bovine cervicovaginal mucus that are modulated during the estrous cycle and could potentially be used as biomarkers of estrus and ovulation. Cervicovaginal mucus was collected from crossbred beef heifers (n = 8), which were synchronized using an 8-d controlled internal drug release (CIDR) protocol and in which onset of estrus and time of ovulation were determined by visual observation and ultrasonography, respectively. Mucus samples were collected between 0 and 96 h after CIDR removal (estrus onset occurred at 49.1 ± 3.3 h after CIDR removal). A validation study was performed on an independent group of 15 heifers from which cervicovaginal mucus samples were collected every 8 h from 40 to 80 h after CIDR removal. The VOC in mucus were identified using gas chromatography-mass spectrometry and selected compounds were quantified using selected-ion flow-tube mass spectrometry. The presence of 47 VOC was detected in mucus samples by gas chromatography-mass spectrometry with those exhibiting highest abundance including 2-butanone, acetone, 2-pentanone, 4-methyl-2-pentanone, 1-(1-methylethoxy)-2-propanone, ethanol, 2-methyl-2-propanol, and 2-butanol. All VOC peaked between 24 to 47 h after the onset of estrus (ovulation occurred 26.6 ± 5.6 h after estrus onset). Two VOC, 2-pentanone and 4-methyl-2-pentanone, exhibited a significant increase at the onset of estrus, whereas concentration of 2-butanone increased significantly just after estrus onset, indicating that these VOC may be used as putative biomarkers of estrus. The results of our study may contribute to the development of a sensor device based on VOC to aid the detection of estrus and ovulation in cattle, with particular relevance for the dairy industry where the majority of females are bred by artificial insemination.


Assuntos
Bovinos/metabolismo , Muco do Colo Uterino/metabolismo , Sincronização do Estro , Estro , Ovulação/metabolismo , Vagina/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Preparações de Ação Retardada , Sincronização do Estro/métodos , Feminino , Inseminação Artificial/veterinária , Valor Preditivo dos Testes , Progesterona , Ultrassonografia/veterinária
9.
Biol Reprod ; 102(1): 38-52, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31504197

RESUMO

Most current knowledge of sex determination in mammals has emerged from mouse and human studies. To investigate the molecular regulation of the sex determination process in cattle, we used an RNA sequencing strategy to analyze the transcriptome landscape of male and female bovine fetal gonads collected in vivo at key developmental stages: before, during, and after SRY gene activation on fetal days D35 (bipotential gonad formation), D39 (peak SRY expression), and D43 (early gonad differentiation). Differentially expressed genes (DEGs) were identified in male vs. female germinal ridges and among group genes showing similar expression profiles during the three periods. There were 143, 96, and 658 DEG between males and female fetuses at D35, D39, and D43, respectively. On D35, genes upregulated in females were enriched in translation, nuclear export, RNA localization, and mRNA splicing events, whereas those upregulated in males were enriched in cell proliferation regulation and male sex determination terms. In time-course experiments, 767 DEGs in males and 545 DEGs in females were identified between D35 vs. D39, and 3157 DEGs in males and 2008 in females were identified between D39 vs. D43. Results highlight unique aspects of sex determination in cattle, such as the expression of several Y chromosome genes (absent in mice and humans) before SRY expression and an abrupt increase in the nuclear expression of SOX10 (instead of SOX9 expression in the Sertoli cell cytoplasm as observed in mice) during male determination and early differentiation.


Assuntos
Gônadas/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXE/genética , Processos de Determinação Sexual/fisiologia , Proteína da Região Y Determinante do Sexo/genética , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/metabolismo , Células de Sertoli/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Transcriptoma
10.
Biol Reprod ; 102(3): 730-739, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31786596

RESUMO

Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.


Assuntos
Fertilidade/fisiologia , Proteoma/metabolismo , Útero/metabolismo , Animais , Bovinos , Cromogranina A/metabolismo , Biologia Computacional , Feminino , Receptor 1 de Folato/metabolismo , Lactoferrina/metabolismo , Proteômica , Espectrometria de Massas em Tandem
11.
Reprod Fertil Dev ; 32(6): 564-571, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32209207

RESUMO

The aim of this study was to determine the effect of maternal-embryonic asynchrony in the reproductive tract (oviduct and uterus) on subsequent embryo development in cattle. Fifty Day 1invitro-produced zygotes were transferred endoscopically into the oviduct ipsilateral to the corpus luteum of heifers (n=40) that were either synchronous with the embryos (Day 1 after ovulation) or asynchronous and ahead of the embryo (Day 3 after ovulation). A subset of heifers was killed in a commercial abattoir 3, 6 or 14 days after embryo transfer. Location within the reproductive tract, developmental stage and the quality of embryos were recorded. Transfer of embryos to an advanced (asynchronous) oviduct resulted, on Day 4, in fewer embryos at the expected location (oviduct), and a greater number of degenerated and retarded embryos with a lower total cell number than for embryos in the synchronous group. Similarly, on Day 7, asynchrony led to a greater number of degenerated and retarded embryos compared with the synchronous group. Total embryo cell number was similar among groups. Although Day 15 conceptuses were longer following asynchronous transfer, only 50% of the asynchronous heifers yielded conceptuses, compared with 100% in the synchronous group. In conclusion, asynchrony between the developing embryo and the reproductive tract has a negative effect on embryo development.


Assuntos
Blastocisto/fisiologia , Bovinos/fisiologia , Transferência Embrionária/veterinária , Ciclo Estral , Fertilização in vitro/veterinária , Oviductos/fisiologia , Ovulação , Animais , Desenvolvimento Embrionário , Feminino , Gravidez , Fatores de Tempo
12.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121434

RESUMO

Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.


Assuntos
Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Proteínas/genética , Proteômica , Aminoácidos/metabolismo , Animais , Bovinos , Embrião de Mamíferos , Tubas Uterinas/metabolismo , Feminino , Oócitos/metabolismo , Oviductos/metabolismo , Gravidez , Proteínas/metabolismo
13.
BMC Genomics ; 20(1): 202, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871468

RESUMO

BACKGROUND: Alternative splicing (AS) may play an important role in gonadal sex determination (GSD) in mammals. The present study was designed to identify differentially expressed isoforms and AS modifications accompanying GSD in mice. RESULTS: Using deep RNA-sequencing, we performed a transcriptional analysis of XX and XY gonads during sex determination on embryonic days 11 (E11) and 12 (E12). Analysis of differentially expressed genes (DEG) identified hundreds of genes related to GSD and early sex differentiation that may represent good candidates for sex reversal. Expression at time point E11 in males was significantly enriched in RNA splicing and mRNA processing Gene Ontology terms. Differentially expressed isoform analysis identified hundreds of specific isoforms related to GSD, many of which showed no differences in the DEG analysis. Hundreds of AS events were identified as modified at E11 and E12. Female E11 gonads featured sex-biased upregulation of intron retention (in genes related to regulation of transcription, protein phosphorylation, protein transport and mRNA splicing) and exon skipping (in genes related to chromatin repression) suggesting AS as a post-transcription mechanism that controls sex determination of the bipotential fetal gonad. CONCLUSION: Our data suggests an important role of splicing regulatory mechanisms for sex determination in mice.


Assuntos
Processamento Alternativo , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Gônadas/metabolismo , Diferenciação Sexual , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos , Isoformas de Proteínas
14.
BMC Genomics ; 20(1): 233, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898106

RESUMO

BACKGROUND: Lactation and associated metabolic stresses during the post-partum period have been shown to impair fertility in dairy cows. The oviduct plays key roles in embryo development and the establishment of pregnancy in cattle. The aim of this study was to investigate the effects of lactation and location relative to the corpus luteum (CL) on the transcriptome of the bovine oviduct epithelium. RESULTS: An original animal model was used. At 60 days post-partum, Holstein lactating (n = 4) and non-lactating (i.e. never milked after calving; n = 5) cows, as well as control nulliparous heifers (n = 5), were slaughtered on Day 3 following induced estrus, and epithelial samples from the oviductal ampulla and isthmus ipsilateral and contralateral to the corpus luteum (CL) were recovered for RNA sequencing. In the oviduct ipsilateral to the CL, differentially expressed genes (DEGs) were identified between heifers compared with both postpartum cow groups. However, only 15 DEGs were identified between post-partum lactating and non-lactating cows in the ipsilateral isthmus and none were identified in the ipsilateral ampulla. In contrast, 192 and 2583 DEGs were identified between ipsilateral and contralateral ampulla and isthmus, respectively. In both regions, more DEGs were identified between ipsilateral and contralateral oviducts in non-lactating cows and heifers than in lactating cows. Functional annotation of the DEGs associated with comparisons between metabolic groups highlighted a number of over-represented biological functions and cell pathways including immune response and cholesterol/steroid biosynthesis. CONCLUSIONS: Gene expression in the oviduct epithelium, particularly in the isthmus, was more affected by the location relative to the CL than by lactation at Day 3 post-estrus. Furthermore, the effect of the proximity to the CL was modulated by the metabolic status of the cow.


Assuntos
Corpo Lúteo/metabolismo , Perfilação da Expressão Gênica , Lactação , Oviductos/metabolismo , Animais , Bovinos , Corpo Lúteo/citologia , Feminino , Masculino , Sobrevivência de Tecidos
15.
Biol Reprod ; 101(2): 328-337, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181571

RESUMO

Conceptus elongation is a fundamental developmental event coinciding with a period of significant pregnancy loss in cattle. The process has yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by systemic progesterone. To better understand the environment facilitating this critical reproductive phenomenon, we interrogated the biochemical composition of uterine luminal fluid from heifers with high vs physiological circulating progesterone on days 12-14 of the estrous cycle-the window of conceptus elongation-initiation-by high-throughput untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. A total of 233 biochemicals were identified, clustering within 8 superpathways [amino acids (33.9%), lipids (32.2%), carbohydrates (8.6%), nucleotides (8.2%), xenobiotics (6.4%), cofactors and vitamins (5.2%), energy substrates (4.7%), and peptides (0.9%)] and spanning 66 metabolic subpathways. Lipids dominated total progesterone (39.1%) and day (57.1%) effects; however, amino acids (48.5%) and nucleotides (14.8%) accounted for most day by progesterone interactions. Corresponding pathways over-represented in response to day and progesterone include (i) methionine, cysteine, s-adenosylmethionine, and taurine (9.3%); (ii) phospholipid (7.4%); and (iii) (hypo)xanthine and inosine purine metabolism (5.6%). Moreover, under physiological conditions, the uterine lumen undergoes a metabolic shift after day 12, and progesterone supplementation increases total uterine luminal biochemical abundance at a linear rate of 0.41-fold day-1-resulting in a difference (P ≤ 0.0001) by day 14. This global metabolic analysis of uterine fluid during the initiation of conceptus elongation offers new insights into the biochemistry of maternal-embryo communication, with implications for improving ruminant fertility.


Assuntos
Bovinos/embriologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Progesterona/metabolismo , Animais , Metabolômica
16.
Biol Reprod ; 100(2): 365-380, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203055

RESUMO

This study investigated bovine conceptus-induced modifications to the endometrial transcriptome related to effects of interferon tau (IFNT), conceptus origin (in vivo vs. in vitro), and conceptus sex. In vitro (IVF) or in vivo (superovulation and artificial insemination, AI) produced blastocysts were transferred into recipient heifers on day 7 of the estrous cycle. On day 15, IVF- or AI-derived conceptuses were obtained by uterine flushing and individually placed on endometrial explants in media for 6 h. Explants were also cultured with media alone as a control or media containing 100 ng/mL IFNT. Total explant RNA was analyzed by RNA-Seq. Incubation of endometrium with IFNT or IVF- or AI-derived conceptuses changed (P ≤ 0.001) expression of 491, 498, and 576 transcripts, respectively, compared to the control. Further, 369 differentially expressed genes (DEGs) were common between explants exposed to IFNT or a conceptus. A total of 240 DEGs were uniquely altered by conceptuses (IVF- and AI-derived) but not IFNT. Of these transcripts, 46 were shared between the IVF and AI groups, while 61 and 133 were specific to IVF and AI conceptuses, respectively. Five genes [melanophilin (MLPH), prominin-2 (PROM2), myeloid associated differentiation marker (MYADM), vomeronasal 1 receptor 4 like (VN1R4L) and 5-hydroxytryptamine receptor 1A (HTR1A)] were more abundant in endometrium exposed to female compared to male conceptuses (P < 0.001). A single gene [ADP-ribosylation factor like GTPase 4C (ARL4C)] was more abundant in response to male conceptuses (P < 0.001) than female conceptuses. These data support the hypothesis that conceptus regulation of gene expression in the endometrium is complex and involves factors other than IFNT that may have a biological role in pregnancy establishment.


Assuntos
Bovinos/embriologia , Endométrio/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Prenhez , Animais , Sincronização do Estro , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina , Inseminação Artificial , Gravidez , Progesterona/administração & dosagem , Progesterona/farmacologia , Superovulação , Transcriptoma
17.
Biol Reprod ; 101(5): 893-905, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347661

RESUMO

The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.


Assuntos
Líquidos Corporais/química , Tubas Uterinas/fisiologia , Proteoma , Animais , Líquidos Corporais/metabolismo , Bovinos , Feminino , Regulação da Expressão Gênica/fisiologia , Proteômica , Transcriptoma
18.
Reproduction ; 158(1): 85-94, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022701

RESUMO

During its journey through the oviduct, the bovine embryo may induce transcriptomic and metabolic responses, via direct or indirect contact, from bovine oviduct epithelial cells (BOECs). An in vitro model using polyester mesh was established, allowing the study of the local contact during 48 h between a BOEC monolayer and early embryos (2- or 8-cell stage) or their respective conditioned media (CM). The transcriptomic response of BOEC to early embryos was assessed by analyzing the transcript abundance of SMAD6, TDGF1, ROCK1, ROCK2, SOCS3, PRELP and AGR3 selected from previous in vivo studies and GPX4, NFE2L2, SCN9A, EPSTI1 and IGFBP3 selected from in vitro studies. Moreover, metabolic analyses were performed on the media obtained from the co-culture. Results revealed that presence of early embryos or their CM altered the BOEC expression of NFE2L2, GPX4, SMAD6, IGFBP3, ROCK2 and SCN9A. However, the response of BOEC to two-cell embryos or their CM was different from that observed to eight-cell embryos or their CM. Analysis of energy substrates and amino acids revealed that BOEC metabolism was not affected by the presence of early embryos or by their CM. Interestingly, embryo metabolism before embryo genome activation (EGA) seems to be independent of exogenous sources of energy. In conclusion, this study confirms that early embryos affect BOEC transcriptome and BOEC response was embryo stage specific. Moreover, embryo affects BOEC via a direct contact or via its secretions. However transcriptomic response of BOEC to the embryo did not manifest as an observable metabolic response.


Assuntos
Embrião de Mamíferos/metabolismo , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metaboloma , Oviductos/metabolismo , Transcriptoma , Animais , Bovinos , Técnicas de Cultura Embrionária , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células Epiteliais/citologia , Tubas Uterinas/citologia , Feminino , Perfilação da Expressão Gênica , Oviductos/citologia
19.
Reprod Fertil Dev ; 30(9): 1245-1252, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29566785

RESUMO

Proteomic analyses are useful for understanding the metabolic pathways governing embryo development. This study investigated the presence of enzymes involved in glycolysis and glycogenesis in in vitro-produced bovine embryos at five developmental stages leading up to blastocyst formation. The enzymes examined were: (1) glycolytic: hexokinase-I (HK-I), phosphofructokinase-1 (PFK-1), pyruvate kinase mutase 1/2 (PKM-1/2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and (2) glycogenic: glycogen synthase kinase-3 isoforms α/ ß (GSK-3α/ß). Glucose transporter-1 (GLUT-1) was also analysed. The developmental stages examined were: (1) 2-4-cell, (2) 5-8-cell, (3) 16-cell, (4) morula and (5) expanded blastocyst. The enzymes HK-I, PFK-1, PKM-1/2, GAPDH and GLUT-1 were differentially expressed throughout all stages (P<0.05). GSK-3α and ß were also differentially expressed from the 2-4-cell to the expanded blastocyst stage (P<0.05) and GLUT-1 was identified throughout. The general trend was that the abundance of PFK1, GAPDH and PKM-1/2 decreased whereas HK-I, phospho-GSK3α (P-GSK3α) and P-GSK3ß levels increased as the embryo advanced. In contrast, GLUT-1 expression peaked at the 16-cell stage. These data combined suggest that in vitro bovine embryo metabolism switches from being glycolytic-centric to glycogenic-centric around the 16-cell stage, the developmental window also characterised by embryonic genome activation.


Assuntos
Desenvolvimento Embrionário/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (NADP+)(Fosforiladora)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hexoquinase/metabolismo , Fosfofrutoquinase-1/metabolismo , Animais , Bovinos , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/fisiologia , Proteômica
20.
J Dairy Sci ; 101(6): 5549-5558, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550136

RESUMO

Temperature regulation of liquid bovine semen can be difficult in field situations. Two experiments were carried out to assess the effect of storage temperature on in vitro sperm characteristics and 60-d nonreturn rate (NRR) following artificial insemination (AI) of liquid bovine semen. In experiment 1, the effect of storage of liquid bovine semen in INRA96 diluent (IMV Technologies, L'Aigle, France) at 1 of 5 storage temperatures (5, 15, or 28°C, and fluctuating between 5 and 15°C or 5 and 28°C) on total and progressive motility and kinematic parameters was assessed objectively via computer-assisted sperm analyzer on d 0, 1, 2, 3, and 4 after collection. Fluctuating temperatures were designed to mimic day- to nighttime variation. In experiment 2, we assessed the field fertility of liquid semen stored at a constant 5 or 15°C or in an unregulated manner and compared with that of frozen-thawed semen (total of n = 106,738 inseminations). In experiment 1, we detected a linear decrease in motility with increased duration of storage. Semen stored at a constant 15°C or fluctuating between 5 and 15°C had greater total motility than semen held at 5 or 28°C or fluctuating between 5 and 28°C; however, semen stored at 15°C and fluctuating between 5 and 15°C did not differ from each other. Semen held at a constant 5 or 15°C or fluctuating between 5 and 15°C, although not differing from each other, had higher progressive motility scores than that held at 28°C or fluctuating between 5 and 28°C. Semen stored at a constant 28°C exhibited poor motility and velocity values but had high progressive motion values compared with that all other storage temperatures; however, the other storage temperatures did not differ from each other in relation to motility kinematics. In experiment 2, semen stored at a constant 5°C resulted in a lower 60-d NRR (62.5%) than storage at constant 15°C or unregulated temperature or frozen-thawed semen (73.6, 74.6, and 74.4%, respectively. In conclusion, sperm stored in IRNA96 are quite tolerant in terms of storage temperature, retaining acceptable motility between 5 and 15°C. Storing semen at a constant 15°C resulted in greater in vitro sperm motility and higher NRR rates than storage at 5°C and did not differ in NRR from frozen-thawed semen or semen stored at an unregulated temperature; however, lower storage temperatures were shown to be more detrimental to sperm in vivo than unregulated storage conditions.


Assuntos
Bovinos , Preservação do Sêmen/veterinária , Sêmen/fisiologia , Temperatura , Animais , França , Inseminação Artificial , Masculino , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa