Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 145(36): 19533-19541, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642307

RESUMO

The environment around a host-guest complex is defined by intermolecular interactions between the complex, solvent molecules, and counterions. These interactions govern both the solubility of these complexes and the rates of reactions occurring within the host molecules and can be critical to catalytic and separation applications of host-guest systems. However, these interactions are challenging to detect using standard analytical chemistry techniques. Here, we quantify the hydration and ion pairing of a FeII4L4 coordination cage with a set of guest molecules having widely varying physicochemical properties. The impact of guest properties on host ion pairing and hydration was determined through microwave microfluidic measurements paired with principal component analysis (PCA). This analysis showed that introducing guest molecules into solution displaced counterions that were bound to the cage, and that the solvent solubility of the guest has the greatest impact on the solvent and ion-pairing dynamics surrounding the host. Specifically, we found that when we performed PCA of the measured equivalent circuit parameters and the solubility and dipole moment, we observed a high (>90%) explained variance for the first two principal components for each circuit parameter. We also observed that cage-counterion pairing is well-described by a single ion-pairing type, with a one-step reaction model independent of the type of cargo, and that the ion-pairing association constant is reduced for cargo with higher water solubility. Quantifying hydration and cage-counterion interactions is a critical step to building the next generation of design criteria for host-guest chemistries.

2.
Arch Womens Ment Health ; 26(3): 389-399, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37138166

RESUMO

The perinatal period is one of increased vulnerability to parents experiencing the onset of, or an increase of existing, obsessive-compulsive disorder (OCD) symptoms. Existing OCD and perinatal mental health best practice guidelines do not detail specific considerations relevant to OCD in the perinatal period ('Perinatal OCD'). Perinatal OCD risks being undiagnosed or misdiagnosed, and subsequently untreated or mistreated, with potential negative impacts for individuals and families experiencing this problem, highlighting the importance of specific guidance. This study employed a modified Delphi survey methodology to establish recommended best practice for the assessment and treatment of perinatal OCD. A literature review identified 103 initial best practice recommendations, and participants suggested 18 further recommendations. These recommendations were rated for importance over three survey rounds by two expert panels, comprising of 15 professionals with clinical or research expertise in perinatal OCD and 14 consumers with lived experience of perinatal OCD. One-hundred and two statements were endorsed for inclusion in the final set of recommendations for clinical best practice with perinatal OCD. These recommendations inform practice across eight themes; psychoeducation, screening, assessment, differential diagnosis, case care considerations, treatment, partners & families, and culture & diversity. This novel study is the first to collate and outline a set of clinical best practice recommendations, developed using the consensus perspectives of both individuals with lived experience and professionals with relevant expertise, for supporting individuals with perinatal OCD and their families. Differences between panel perspectives, and directions for future research are also discussed.


Assuntos
Transtorno Obsessivo-Compulsivo , Gravidez , Feminino , Humanos , Consenso , Técnica Delphi , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/terapia , Parto , Saúde Mental
3.
Nat Mater ; 19(2): 176-181, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31873229

RESUMO

Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO3)nSrO Ruddlesden-Popper dielectric grown on (110) DyScO3. The defect mitigating nature of (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but the resulting atomically engineered superlattice material, (SrTiO3)n-m(BaTiO3)mSrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies. As tuneable dielectrics are key constituents of emerging millimetre-wave high-frequency devices in telecommunications, our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.

4.
Phys Rev Appl ; 13(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-38487596

RESUMO

Frequency-dependent linear-permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric field. However, nonlinear dielectric materials are widely used for their responses to large applied fields, including switching in ferroelectric materials, and field tuning of the permittivity in paraelectric materials. These behaviors are described by nonlinear permittivity. Nonlinear-permittivity measurements are fraught with technical challenges because of the complex electrical coupling between a sample and its environment. Here, we describe a technique for measuring the complex nonlinear permittivity that circumvents many of the difficulties associated with other approaches. We validate this technique by measuring the nonlinear permittivity of a tunable Ba0.5Sr0.5TiO3 thin film up to 40 GHz and comparing our results with a phenomenological model. These measurements provide insight into the dynamics of nonlinear dielectric materials down to picosecond timescales.

5.
Nat Commun ; 10(1): 1174, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862776

RESUMO

Detection of conformational changes in biomolecular assemblies provides critical information into biological and self-assembly processes. State-of-the-art in situ biomolecular conformation detection techniques rely on fluorescent labels or protein-specific binding agents to signal conformational changes. Here, we present an on-chip, label-free technique to detect conformational changes in a DNA nanomechanical tweezer structure with microwave microfluidics. We measure the electromagnetic properties of suspended DNA tweezer solutions from 50 kHz to 110 GHz and directly detect two distinct conformations of the structures. We develop a physical model to describe the electrical properties of the tweezers, and correlate model parameters to conformational changes. The strongest indicator for conformational changes in DNA tweezers are the ionic conductivity, while shifts in the magnitude of the cooperative water relaxation indicate the addition of fuel strands used to open the tweezer. Microwave microfluidic detection of conformational changes is a generalizable, non-destructive technique, making it attractive for high-throughput measurements.


Assuntos
DNA/química , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Nanoestruturas/química , Conformação de Ácido Nucleico , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos , Micro-Ondas , Modelos Químicos
6.
Adv Sci (Weinh) ; 6(21): 1900582, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728272

RESUMO

Delivery of nucleic acids into solid tumor environments remains a pressing challenge. This study examines the ability of macrophages to horizontally transfer small interfering RNA (siRNA) lipoplexes to cancer cells. Macrophages are a natural candidate for a drug carrier because of their ability to accumulate at high densities into many cancer types, including, breast, prostate, brain, and colon cancer. Here, it is demonstrated that macrophages can horizontally transfer siRNA to cancer cells during in vitro coculture. The amount of transfer can be dosed depending on the amount of siRNA loaded and total number of macrophages delivered. Macrophages loaded with calcium integrin binding protein-1 (CIB1)-siRNA result in decreased tumorsphere growth and decreased mRNA expression of CIB1 and KI67 in MDA-MB-468 human breast cancer cells. Adoptive transfer of macrophages transfected with CIB1-siRNA localizes to the orthotopic MDA-MB-468 tumor. Furthermore, it is reported that macrophage activation can modulate this transfer process as well as intracellular trafficking protein Rab27a. As macrophages are heavily involved in tumor progression, understanding how to use macrophages for drug delivery can substantially benefit the treatment of tumors.

7.
Lab Chip ; 17(15): 2674-2681, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28702651

RESUMO

Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.

8.
ACS Appl Mater Interfaces ; 8(7): 4903-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791337

RESUMO

Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

9.
ACS Appl Mater Interfaces ; 8(35): 23230-5, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27468781

RESUMO

Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces.

10.
Rev Sci Instrum ; 86(7): 073703, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233392

RESUMO

Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

11.
Sci Rep ; 5: 17019, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592441

RESUMO

Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

12.
ACS Nano ; 9(6): 6050-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26030266

RESUMO

Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. These relationships can be developed only through the detailed characterization of the nanoscale reinforcement morphology within the embedding medium. Here, we reveal the three-dimensional (3D) nanoscale morphology of high volume fraction (V(f)) aligned CNT/epoxy-matrix nanocomposites using energy-filtered electron tomography. We present an automated phase-identification method for fast, accurate, representative rendering of the CNT spatial arrangement in these low-contrast bimaterial systems. The resulting nanometer-scale visualizations provide quantitative information on the evolution of CNT morphology and dispersion state with increasing V(f), including network structure, CNT alignment, bundling and waviness. The CNTs are observed to exhibit a nonlinear increase in bundling and alignment and a decrease in waviness as a function of increasing V(f). Our findings explain previously observed discrepancies between the modeled and measured trends in bulk mechanical, electrical and thermal properties. The techniques we have developed for morphological quantitation are applicable to many low-contrast material systems.

13.
Beilstein J Nanotechnol ; 5: 1637-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383276

RESUMO

We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities.

14.
Sci Rep ; 4: 6367, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25220062

RESUMO

Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa