Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 83(16): 2884-2895.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37536340

RESUMO

DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1-24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214-223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Nucleossomos/genética , Metilação , DNA/metabolismo , Replicação do DNA
2.
Nature ; 577(7791): 576-581, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875854

RESUMO

DNA replication is a tightly regulated process that ensures the precise duplication of the genome during the cell cycle1. In eukaryotes, the licensing and activation of replication origins are regulated by both DNA sequence and chromatin features2. However, the chromatin-based regulatory mechanisms remain largely uncharacterized. Here we show that, in HeLa cells, nucleosomes containing the histone variant H2A.Z are enriched with histone H4 that is dimethylated on its lysine 20 residue (H4K20me2) and with bound origin-recognition complex (ORC). In vitro studies show that H2A.Z-containing nucleosomes bind directly to the histone lysine methyltransferase enzyme SUV420H1, promoting H4K20me2 deposition, which is in turn required for ORC1 binding. Genome-wide studies show that signals from H4K20me2, ORC1 and nascent DNA strands co-localize with H2A.Z, and that depletion of H2A.Z results in decreased H4K20me2, ORC1 and nascent-strand signals throughout the genome. H2A.Z-regulated replication origins have a higher firing efficiency and early replication timing compared with other origins. Our results suggest that the histone variant H2A.Z epigenetically regulates the licensing and activation of early replication origins and maintains replication timing through the SUV420H1-H4K20me2-ORC1 axis.


Assuntos
Período de Replicação do DNA , Replicação do DNA , Histonas/metabolismo , Origem de Replicação/genética , DNA/metabolismo , Replicação do DNA/genética , Epigênese Genética , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Lisina/metabolismo , Metilação , Nucleossomos/química , Nucleossomos/metabolismo , Complexo de Reconhecimento de Origem/metabolismo
3.
5.
FASEB J ; 36(6): e22338, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35532550

RESUMO

Histone H4 lysine 20 monomethylation (H4K20me1) plays a crucial role in multiple processes including DNA damage repair, DNA replication, and cell cycle control. Histone methyltransferase SET8 (previously named PR-Set7/KMT5A) mediates the chromatin deposition of H4K20me1, but how SET8 recognizes and modifies H4 in the context of the nucleosome is not fully understood. Here, we developed a simple chemical modification approach for H4K20 substitution by using the lysine analog S-ethyl-L-cysteine (Ecx). Substitution of H4K20 with H4Ecx20 improves the stability of the SET8-nucleosome complex, allowing us to determine the cryo-EM structure at 3.2 Å resolution. Structural analyses show that SET8 directly interacts with the H4 tail and the H2A-H2B acidic patch to ensure nucleosome binding. SET8 residues R339, K341, K351 make contact with nucleosomal DNA at the super helical location 2 (SHL2). Substitution of SET8 DNA-binding residues with alanines decreases the SET8-nucleosome interaction and impairs the methyltransferase activity. Disrupting the binding between SET8 R192 and H2A-H2B acidic patch decreases the cellular level of H4K20me1. Together, these results reveal a near-atomic resolution structure of SET8-bound nucleosome and provide insights into the SET8-mediated H4K20 recognition and modification. The lysine-to-Ecx substitution approach can be applied to the study of other methyltransferases.


Assuntos
Lisina , Nucleossomos , Replicação do DNA , Histonas/metabolismo , Lisina/metabolismo , Metilação
6.
Genes Dev ; 27(19): 2109-24, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24065740

RESUMO

The histone variants H3.3 and H2A.Z have recently emerged as two of the most important features in transcriptional regulation, the molecular mechanism of which still remains poorly understood. In this study, we investigated the regulation of H3.3 and H2A.Z on chromatin dynamics during transcriptional activation. Our in vitro biophysical and biochemical investigation showed that H2A.Z promoted chromatin compaction and repressed transcriptional activity. Surprisingly, with only four to five amino acid differences from the canonical H3, H3.3 greatly impaired higher-ordered chromatin folding and promoted gene activation, although it has no significant effect on the stability of mononucleosomes. We further demonstrated that H3.3 actively marks enhancers and determines the transcriptional potential of retinoid acid (RA)-regulated genes via creating an open chromatin signature that enables the binding of RAR/RXR. Additionally, the H3.3-dependent recruitment of H2A.Z on promoter regions resulted in compaction of chromatin to poise transcription, while RA induction results in the incorporation of H3.3 on promoter regions to activate transcription via counteracting H2A.Z-mediated chromatin compaction. Our results provide key insights into the mechanism of how histone variants H3.3 and H2A.Z function together to regulate gene transcription via the modulation of chromatin dynamics over the enhancer and promoter regions.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Ativação Transcricional/genética , Sequência de Aminoácidos , Animais , Cromatina/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma , Histonas/genética , Camundongos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ácido Retinoico 4 Hidroxilase , Alinhamento de Sequência
7.
BMC Biol ; 16(1): 107, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249243

RESUMO

BACKGROUND: The hierarchical organization of eukaryotic chromatin plays a central role in gene regulation, by controlling the extent to which the transcription machinery can access DNA. The histone variants H3.3 and H2A.Z have recently been identified as key regulatory players in this process, but the underlying molecular mechanisms by which they permit or restrict gene expression remain unclear. Here, we investigated the regulatory function of H3.3 and H2A.Z on chromatin dynamics and Polycomb-mediated gene silencing. RESULTS: Our ChIP-seq analysis reveals that in mouse embryonic stem (mES) cells, H3K27me3 enrichment correlates strongly with H2A.Z. We further demonstrate that H2A.Z promotes PRC2 activity on H3K27 methylation through facilitating chromatin compaction both in vitro and in mES cells. In contrast, PRC2 activity is counteracted by H3.3 through impairing chromatin compaction. However, a subset of H3.3 may positively regulate PRC2-dependent H3K27 methylation via coordinating depositions of H2A.Z to developmental and signaling genes in mES cells. Using all-trans retinoic acid (tRA)-induced gene as a model, we show that the dynamic deposition of H2A.Z and H3.3 coordinately regulates the PRC2-dependent H3K27 methylation by modulating local chromatin structure at the promoter region during the process of turning genes off. CONCLUSIONS: Our study provides key insights into the mechanism of how histone variants H3.3 and H2A.Z function coordinately to finely tune the PRC2 enzymatic activity during gene silencing, through promoting or impairing chromosome compaction respectively.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Complexo Repressor Polycomb 2/genética , Animais , Linhagem Celular , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Complexo Repressor Polycomb 2/metabolismo
8.
Nat Struct Mol Biol ; 30(6): 800-811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37202474

RESUMO

The transmission and maintenance of genetic information in eukaryotic cells relies on the faithful duplication of the entire genome. In each round of division, excessive replication origins are licensed, with only a fraction activated to give rise to bi-directional replication forks in the context of chromatin. However, it remains elusive how eukaryotic replication origins are selectively activated. Here we demonstrate that O-GlcNAc transferase (OGT) enhances replication initiation by catalyzing H4S47 O-GlcNAcylation. Mutation of H4S47 impairs DBF4-dependent protein kinase (DDK) recruitment on chromatin, causing reduced phosphorylation of the replicative helicase mini-chromosome maintenance (MCM) complex and compromised DNA unwinding. Our short nascent-strand sequencing results further confirm the importance of H4S47 O-GlcNAcylation in origin activation. We propose that H4S47 O-GlcNAcylation directs origin activation through facilitating MCM phosphorylation, and this may shed light on the control of replication efficiency by chromatin environment.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Origem de Replicação , Replicação do DNA , Cromatina/metabolismo , Mamíferos/genética
9.
Genome Biol ; 22(1): 206, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253239

RESUMO

BACKGROUND: Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. RESULTS: We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. CONCLUSION: Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.


Assuntos
Cromatina/química , Replicação do DNA , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Antígeno Nuclear de Célula em Proliferação/genética , Origem de Replicação , Transcrição Gênica , Fator de Ligação a CCCTC/antagonistas & inibidores , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Imagem Óptica , Osteoblastos/citologia , Osteoblastos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa