Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomech Eng ; 139(8)2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464119

RESUMO

Annulus fibrosus (AF) defects from intervertebral disk (IVD) herniation and degeneration are commonly associated with back pain. Genipin-crosslinked fibrin hydrogel (FibGen) is an injectable, space-filling AF sealant that was optimized to match AF shear properties and partially restored IVD biomechanics. This study aimed to enhance mechanical behaviors of FibGen to more closely match AF compressive, tensile, and shear properties by adjusting genipin crosslink density and by creating a composite formulation by adding Poly(D,L-lactide-co-glycolide) (PDLGA). This study also evaluated effects of thrombin concentration and injection technique on gelation kinetics and adhesive strength. Increasing FibGen genipin concentration from 1 to 36 mg/mL significantly increased adhesive strength (∼5 to 35 kPa), shear moduli (∼10 to 110 kPa), and compressive moduli (∼25 to 150 kPa) with concentration-dependent effects, and spanning native AF properties. Adding PDLGA to FibGen altered the material microstructure on electron microscopy and nearly tripled adhesive strength, but did not increase tensile moduli, which remained nearly 5× below native AF, and had a small increase in shear moduli and significantly decreased compressive moduli. Increased thrombin concentration decreased gelation rate to < 5 min and injection methods providing a structural FibGen cap increased pushout strength by ∼40%. We conclude that FibGen is highly modifiable with tunable mechanical properties that can be formulated to be compatible with human AF compressive and shear properties and gelation kinetics and injection techniques compatible with clinical discectomy procedures. However, further innovations, perhaps with more efficient fiber reinforcement, will be required to enable FibGen to match AF tensile properties.


Assuntos
Anel Fibroso/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fibrina/química , Iridoides/química , Adesividade , Teste de Materiais , Fenômenos Mecânicos , Poliglactina 910/química
2.
J Biomech Eng ; 138(2): 021007, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26720265

RESUMO

There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation.


Assuntos
Hidrogéis , Disco Intervertebral/citologia , Fenômenos Mecânicos , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Disco Intervertebral/efeitos dos fármacos , Teste de Materiais
3.
JOR Spine ; 3(1): e1074, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211587

RESUMO

Tissue engineering repair of annulus fibrosus (AF) defects has the potential to prevent disability and pain from intervertebral disc (IVD) herniation and its progression to degeneration. Clinical translation of AF repair methods requires assessment in long-term large animal models. An ovine AF injury model was developed using cervical spinal levels and a biopsy-type AF defect to assess composite tissue engineering repair in 1-month and 12-month studies. The repair used a fibrin hydrogel crosslinked with genipin (FibGen) to seal defects, poly(trimethylene carbonate) (PTMC) scaffolds to replace lost AF tissue, and polyurethane membranes to prevent herniation. In the 1-month study, PTMC scaffolds sealed with FibGen herniated with polyurethane membranes. When applied alone, FibGen integrated with the surrounding AF tissue without herniation, showing promise for long-term studies. The 12-month long-term study used only FibGen which showed fibrous healing, biomaterial resorption and no obvious hydrogel-related complications. However, the 2 mm biopsy punch injury condition also exhibited fibrotic healing at 12 months. Both untreated and FibGen treated groups showed equivalency with no detectable differences in histological grades of proteoglycans, cellular morphology, IVD structure and blood vessel formation, biomechanical properties including torque range and axial range of motion, Pfirrmann grade, IVD height, and quantitative scores of vertebral body changes from clinical computed tomography. The biopsy-type injury caused endplate defects with a high prevalence of osteophytes in all groups and no nucleus herniation, indicating that the biopsy-type injury requires further refinement, such as reduction to a slit-type defect that could penetrate the full depth of the AF without damaging the endplate. Results demonstrate translational feasibility of FibGen for AF repair to seal AF defects, although future study with a more refined injury model is required to validate the efficacy of FibGen before translation.

4.
Ann Biomed Eng ; 46(11): 1911-1920, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29926304

RESUMO

A need exists for pre-clinical large animal models of the spine to translate biomaterials capable of repairing intervertebral disc (IVD) defects. This study characterized the effects of cervical spinal level, loading rate, injury and repair with genipin-crosslinked fibrin (FibGen) on axial and torsional mechanics in an ovine cervical spine model. Cervical IVDs C2-C7 from nine animals were tested with cyclic tension-compression (- 240 to 100 N) and cyclic torsion (± 2° and ± 4°) tests at three rates (0.1, 1 and 2 Hz) in intact, injured and repaired conditions. Intact IVDs from upper cervical levels (C2-C4) had significantly higher torque range and torsional stiffness and significantly lower axial range of motion (ROM) and tensile compliance than IVDs from lower cervical levels (C5-C7). A tenfold increase in loading rate significantly increased torque range and torsional stiffness 4-8% (depending on amplitude) (p < 0.001). When normalized to intact, FibGen significantly restored torque range (FibGen: 0.96 ± 0.14, Injury: 0.88 ± 0.14, p = 0.03) and axial ROM (FibGen: 1.00 ± 0.05, Injury: 1.04 ± 0.15, p = 0.02) compared to Injury, with a values of 1 indicating full repair. Cervical spinal level must be considered for controlling biomechanical evaluations, and FibGen restored some torsional and axial biomechanical properties to intact levels.


Assuntos
Vértebras Cervicais , Disco Intervertebral , Modelos Biológicos , Traumatismos da Coluna Vertebral , Animais , Vértebras Cervicais/lesões , Vértebras Cervicais/patologia , Vértebras Cervicais/fisiopatologia , Disco Intervertebral/lesões , Disco Intervertebral/fisiopatologia , Amplitude de Movimento Articular , Ovinos , Traumatismos da Coluna Vertebral/patologia , Traumatismos da Coluna Vertebral/fisiopatologia , Suporte de Carga
5.
J Tissue Eng Regen Med ; 12(2): e727-e736, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27860368

RESUMO

Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Anel Fibroso/patologia , Dioxanos/química , Polietilenoglicóis/química , Polímeros/química , Cicatrização , Adesividade , Animais , Fenômenos Biomecânicos , Bovinos , Técnicas de Cultura de Órgãos
6.
Acta Biomater ; 30: 116-125, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577987

RESUMO

Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. STATEMENT OF SIGNIFICANCE: Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.


Assuntos
Análise de Falha de Equipamento , Hidrogéis/química , Implantes Experimentais , Disco Intervertebral , Falha de Prótese , Alicerces Teciduais/química , Animais , Bovinos , Adesivo Tecidual de Fibrina/química , Humanos , Degeneração do Disco Intervertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa