Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(1): 80-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36030776

RESUMO

INTRODUCTION: Fat mass and obesity-associated (FTO) gene is strongly associated with obesity which brings a major health threat. Altered expression of its encoded protein FTO in the hypothalamus has been identified to contribute to central control of appetite and body weight. However, its molecular mechanisms remain elusive. METHODS: Mouse hypothalamic POMC cell line N43/5 was treated with FTO inhibitor rhein, FTO shRNA, or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 to inhibit FTO or ERK1/2. Rhein and U0126 were injected into lateral ventricle of the mice by intracerebroventricular cannulation. Western blotting and immunofluorescent assays were performed to monitor protein level. RESULTS: This study identified that inhibition of FTO in N43/5 cells led to phosphorylation of signal transducer and activator of transcription 3 (STAT3) at S727 site and induced p-STAT3-S727 nuclear translocation. We further showed that FTO inhibition promoted phosphorylation of ERK1/2; specific inhibition of ERK1/2 signaling by U0126 could abolish the effect of FTO inhibition on STAT3-S727 phosphorylation and nuclear translocation. Furthermore, we found that inhibition of hypothalamic FTO promoted STAT3-S727 phosphorylation in the hypothalamic arcuate nucleus, and the mice showed reductions in food intake and body weight. In addition, inhibition of hypothalamic ERK1/2 could abolish the effects of FTO inhibition on STAT3-S727 phosphorylation, reductions of food intake and body weight. CONCLUSION: Our in vitro and in vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.


Assuntos
Sistema de Sinalização das MAP Quinases , Fator de Transcrição STAT3 , Camundongos , Animais , Fator de Transcrição STAT3/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Obesidade/metabolismo , Ingestão de Alimentos , Fosforilação , Leptina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
2.
Brief Bioinform ; 21(5): 1776-1786, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31686106

RESUMO

Genes are unique in functional role and differ in their sensitivities to genetic defects, but with difficulties in pathogenicity prediction. This study attempted to improve the performance of existing in silico algorithms and find a common solution based on individualization strategy. We initiated the individualization with the epilepsy-related SCN1A variants by sub-regional stratification. SCN1A missense variants related to epilepsy were retrieved from mutation databases, and benign missense variants were collected from ExAC database. Predictions were performed by using 10 traditional tools with stepwise optimizations. Model predictive ability was evaluated using the five-fold cross-validations on variants of SCN1A, SCN2A, and KCNQ2. Additional validation was performed in SCN1A variants of damage-confirmed/familial epilepsy. The performance of commonly used predictors was less satisfactory for SCN1A with accuracy less than 80% and varied dramatically by functional domains of Nav1.1. Multistep individualized optimizations, including cutoff resetting, domain-based stratification, and combination of predicting algorithms, significantly increased predictive performance. Similar improvements were obtained for variants in SCN2A and KCNQ2. The predictive performance of the recently developed ensemble tools, such as Mendelian clinically applicable pathogenicity, combined annotation-dependent depletion and Eigen, was also improved dramatically by application of the strategy with molecular sub-regional stratification. The prediction scores of SCN1A variants showed linear correlations with the degree of functional defects and the severity of clinical phenotypes. This study highlights the need of individualized optimization with molecular sub-regional stratification for each gene in practice.


Assuntos
Variação Genética , Simulação por Computador , Bases de Dados Genéticas , Humanos , Canal de Potássio KCNQ2/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética
3.
Cell Mol Neurobiol ; 42(3): 777-790, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33058074

RESUMO

Arachidonic acid (AA), a polyunsaturated fatty acid, is involved in the modulation of neuronal excitability in the brain. Arachidonate lipoxygenase 3 (ALOXE3), a critical enzyme in the AA metabolic pathway, catalyzes the derivate of AA into hepoxilins. However, the expression pattern of ALOXE3 and its role in the brain has not been described until now. Here we showed that the levels of Aloxe3 mRNA and protein kept increasing since birth and reached the highest level at postnatal day 30 in the mouse hippocampus and temporal cortex. Histomorphological analyses indicated that ALOXE3 was enriched in adult hippocampus, somatosensory cortex and striatum. The distribution was restricted to the neurites of function-specific subregions, such as mossy fibre connecting hilus and CA3 neurons, termini of Schaffer collateral projections, and the layers III and IV of somatosensory cortex. The spatiotemporal expression pattern of ALOXE3 suggests its potential role in the modulation of neural excitability and seizure susceptibility. In fact, decreased expression of ALOXE3 and elevated concentration of AA in the hippocampus was found after status epilepticus (SE) induced by pilocarpine. Local overexpression of ALOXE3 via adeno-associated virus gene transfer restored the elevated AA level induced by SE, alleviated seizure severities by increasing the latencies to myclonic switch, clonic convulsions and tonic hindlimb extensions, and decreased the mortality rate in the pilocarpine-induced SE model. These results suggest that the expression of ALOXE3 is a crucial regulator of AA metabolism in brain, and potentially acts as a regulator of neural excitability, thereby controlling brain development and seizure susceptibility.


Assuntos
Convulsões , Estado Epiléptico , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos , Pilocarpina , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Estado Epiléptico/induzido quimicamente
4.
Cell Mol Neurobiol ; 41(6): 1257-1269, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32500354

RESUMO

Valproate (VPA), a widely-used antiepileptic drug, is a selective inhibitor of histone deacetylase (HDAC) that play important roles in epigenetic regulation. The patient with different diseases receiving this drug tend to exhibit weight gain and abnormal metabolic phenotypes, but the underlying mechanisms remain largely unknown. Here we show that VPA increases the Fto mRNA and protein expression in mouse hypothalamic GT1-7 cells. Interestingly, VPA promotes histone H3/H4 acetylation and the FTO expression which could be reversed by C646, an inhibitor for histone acetyltransferase. Furthermore, VPA weakens the FTO's binding and enhances the binding of transcription factor TAF1 to the Fto promoter, and C646 leads to reverse effect of the VPA, suggesting an involvement of the dynamic of histone H3/H4 acetylation in the regulation of FTO expression. In addition, the mice exhibit an increase in the food intake and body weight at the beginning of 2-week treatment with VPA. Simultaneously, in the hypothalamus of the VPA-treated mice, the FTO expression is upregulated and the H3/H4 acetylation is increased; further the FTO's binding to the Fto promoter is decreased and the TAF1's binding to the promoter is enhanced, suggesting that VPA promotes the assembly of the basal transcriptional machinery of the Fto gene. Finally, the inhibitor C646 could restore the effects of VPA on FTO expression, H3/H4 acetylation, body weight, and food intake; and loss of FTO could reverse the VPA-induced increase of body weight and food intake. Taken together, this study suggests an involvement of VPA in the epigenetic upregulation of hypothalamic FTO expression that is potentially associated with the VPA-induced weight gain.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Epigênese Genética/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Ácido Valproico/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Aumento de Peso/fisiologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1492-1499, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28433711

RESUMO

Voltage-gated sodium channel α-subunit type I (NaV1.1, encoded by SCN1A gene) plays a critical role in the excitability of brain. Downregulation of SCN1A expression is associated with epilepsy, a common neurological disorder characterized by recurrent seizures. Here we reveal a novel role of malate dehydrogenase 2 (MDH2) in the posttranscriptional regulation of SCN1A expression under seizure condition. We identified that MDH2 was an RNA binding protein that could bind two of the four conserved regions in the 3' UTRs of SCN1A. We further showed that knockdown of MDH2 or inactivation of MDH2 activity in HEK-293 cells increased the reporter gene expression through the 3' UTR of SCN1A, and MDH2 overexpression decreased gene expression by affecting mRNA stability. In the hippocampus of seizure mice, the upregulation of MDH2 expression contributed to the decrease of the NaV1.1 levels at posttranscriptional level. In addition, we showed that the H2O2 levels increased in the hippocampus of the seizure mice, and H2O2 could promote the binding of MDH2 to the binding sites of Scn1a gene, whereas ß-mercaptoethanol decreased the binding capability, indicating an important effect of the seizure-induced oxidation on the MDH2-mediated downregulation of Scn1a expression. Taken together, these data suggest that MDH2, functioning as an RNA-binding protein, is involved in the posttranscriptional downregulation of SCN1A expression under seizure condition.


Assuntos
Regiões 3' não Traduzidas , Regulação para Baixo , Malato Desidrogenase/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/biossíntese , Proteínas de Ligação a RNA/metabolismo , Convulsões/metabolismo , Animais , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Malato Desidrogenase/genética , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Convulsões/patologia
6.
Biochim Biophys Acta ; 1849(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459751

RESUMO

Increased expression of sodium channel SCN3A, an embryonic-expressed gene, has been identified in epileptic tissues, which is believed to contribute to the development of epilepsy. However, the regulatory mechanism of SCN3A expression under epileptic condition is still unknown. Here we showed a high level of Scn3a mRNA expression in mouse embryonic hippocampus with gradually decreasing to a low level during the postnatal development and a methylation of a specific CpG site (-39C) in the Scn3a promoter was increased in hippocampus during postnatal development, corresponding to the downregulation of Scn3a expression. Furthermore, in vitro methylation and -39C>T mutation of the Scn3a promoter decreased the reporter gene expression, suggesting an important role of the -39C site in regulating gene expression. We then demonstrated that the sequence containing -39C was a MBD2-binding motif and the CpG methylation of the promoter region increased the capability of MBD2's binding to the motif. Knockdown of MBD2 in mouse N1E-115 cells led to the -39C methylation and the downregulation of Scn3a transcription by decreasing the Scn3a promoter activity. In the hippocampus of seizure mice, the expressions of Scn3a and Mbd2 were upregulated after 10-day KA treatment. At the same time point, the -39C site was demethylated and the capability of MBD2's binding to the Scn3a promoter motif was decreased. Taken together, these findings suggest that CpG methylation and MBD2 are involved in altering Scn3a expression during postnatal development and seizure condition.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Hipocampo/crescimento & desenvolvimento , Canal de Sódio Disparado por Voltagem NAV1.3/biossíntese , Convulsões/genética , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/patologia , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.3/genética , RNA Mensageiro/genética , Convulsões/patologia , Transcrição Gênica
7.
Hum Mutat ; 36(6): 573-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754450

RESUMO

Mutations in the SCN1A gene have been identified in epilepsy patients with widely variable phenotypes and modes of inheritance and in asymptomatic carriers. This raises challenges in evaluating the pathogenicity of SCN1A mutations. We systematically reviewed all SCN1A mutations and established a database containing information on functional alterations. In total, 1,257 mutations have been identified, of which 81.8% were not recurrent. There was a negative correlation between phenotype severity and missense mutation frequency. Further analyses suggested close relationships among genotype, functional alteration, and phenotype. Missense mutations located in different sodium channel regions were associated with distinct functional changes. Missense mutations in the pore region were characterized by the complete loss of function, similar to haploinsufficiency. Mutations with severe phenotypes were more frequently located in the pore region, suggesting that functional alterations are critical in evaluating pathogenicity and can be applied to patient management. A negative correlation was found between phenotype severity and familial incidence, and incomplete penetrance was associated with missense and splice site mutations, but not truncations or genomic rearrangements, suggesting clinical genetic counseling applications. Mosaic mutations with a load of 12.5-25.0% were potentially pathogenic with low penetrance, suggesting the need for future studies on less pathogenic genomic variations.


Assuntos
Bases de Dados Genéticas , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsia/genética , Família , Estudos de Associação Genética/métodos , Genótipo , Humanos , Padrões de Herança , Mosaicismo , Mutação de Sentido Incorreto , Fenótipo
8.
Hum Genet ; 133(6): 801-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24464349

RESUMO

Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3' UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3' UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3' UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH's binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3'-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3'-UTR variants and SCN1A-related diseases.


Assuntos
Regiões 3' não Traduzidas , Epilepsias Mioclônicas/genética , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Alelos , Sequência de Bases , Sítios de Ligação , Criança , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Feminino , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Haploinsuficiência , Humanos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Linhagem , Ligação Proteica , Estabilidade de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
J Proteomics ; 303: 105202, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797434

RESUMO

Deficiency in fragile X mental retardation 1 (Fmr1) leads to loss of its encoded protein FMRP and causes fragile X syndrome (FXS) by dysregulating its target gene expression in an age-related fashion. Using comparative proteomic analysis, this study identified 105 differentially expressed proteins (DEPs) in the hippocampus of postnatal day 7 (P7) Fmr1-/y mice and 306 DEPs of P90 Fmr1-/y mice. We found that most DEPs in P90 hippocampus were not changed in P7 hippocampus upon FMRP absence, and some P90 DEPs exhibited diverse proteophenotypes with abnormal expression of protein isoform or allele variants. Bioinformatic analyses showed that the P7 DEPs were mainly enriched in fatty acid metabolism and oxidoreductase activity and nutrient responses; whereas the P90 PEPs (especially down-regulated DEPs) were primarily enriched in postsynaptic density (PSD), neuronal projection development and synaptic plasticity. Interestingly, 25 of 30 down-regulated PSD proteins present in the most enriched protein to protein interaction network, and 6 of them (ANK3, ATP2B2, DST, GRIN1, SHANK2 and SYNGAP1) are both FMRP targets and autism candidates. Therefore, this study suggests age-dependent alterations in hippocampal proteomes upon loss of FMRP that may be associated with the pathogenesis of FXS and its related disorders. SIGNIFICANCE: It is well known that loss of FMRP resulted from Fmr1 deficiency leads to fragile X syndrome (FXS), a common neurodevelopmental disorder accompanied by intellectual disability and autism spectrum disorder (ASD). FMRP exhibits distinctly spatiotemporal patterns in the hippocampus between early development and adulthood, which lead to distinct dysregulations of gene expression upon loss of FMRP at the two age stages potentially linked to age-related phenotypes. Therefore, comparison of hippocampal proteomes between infancy and adulthood is valuable to provide insights into the early causations and adult-dependent consequences for FXS and ASD. Using a comparative proteomic analysis, this study identified 105 and 306 differentially expressed proteins (DEPs) in the hippocampi of postnatal day 7 (P7) and P90 Fmr1-/y mice, respectively. Few overlapping DEPs were identified between P7 and P90 stages, and the P7 DEPs were mainly enriched in the regulation of fatty acid metabolism and oxidoreduction, whereas the P90 DEPs were preferentially enriched in the regulation of synaptic formation and plasticity. Particularly, the up-regulated P90 proteins are primarily involved in immune responses and neurodegeneration, and the down-regulated P90 proteins are associated with postsynaptic density, neuron projection and synaptic plasticity. Our findings suggest that distinctly changed proteins in FMRP-absence hippocampus between infancy and adulthood may contribute to age-dependent pathogenesis of FXS and ASD.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Hipocampo , Proteoma , Animais , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Hipocampo/metabolismo , Camundongos , Proteoma/metabolismo , Proteoma/análise , Síndrome do Cromossomo X Frágil/metabolismo , Densidade Pós-Sináptica/metabolismo , Camundongos Knockout , Proteômica , Masculino , Envelhecimento/metabolismo , Plasticidade Neuronal
10.
J Nutr Biochem ; 125: 109554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142716

RESUMO

Substantial evidence suggest that chronic consumption of high-fat diets (HFDs) can lead to obesity, abnormal metabolism, as well as cognitive impairment. Molecular and cellular changes regarding hippocampal dysfunctions have been identified in multiple HFD animal models. Therefore, in-depth identification of expression changes of hippocampal proteins is critical for understanding the mechanism of HFD-induced cognitive deficits. In this study, we fed 3-week-old male mice with HFD for 3 months to generate obese mice who exhibit systemic metabolic abnormality and learning and memory decline. Using an iTRAQ-labeled proteomic analysis, we identified a total of 82 differentially expressed proteins (DEPs) in the hippocampus upon HFD with 35 up-regulated proteins and 47 down-regulated proteins. Functional enrichment indicated that these DEPs were predominantly enriched in regulation of catabolic process, dendritic shaft, neuron projection morphogenesis and GTPase regulator activity. Protein-protein interaction enrichment showed that the DEPs are mostly enriched in postsynaptic functions; and of them, six proteins (i.e., DLG3, SYNGAP1, DCLK1, GRIA4, GRIP1, and ARHGAP32) were involved in several functional assemblies of the postsynaptic density including G-protein signaling, scaffolding and adaptor, kinase and AMPA signaling, respectively. Collectively, our findings suggest that these DEPs upon HFD might contribute to memory decline by disturbing neuronal and postsynaptic functions in the hippocampus.


Assuntos
Dieta Hiperlipídica , Proteômica , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL
11.
J Proteomics ; 274: 104822, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646274

RESUMO

Fragile X mental retardation protein (FMRP) deficit resulted from mutations in its encoded fragile X mental retardation 1 (Fmr1) gene is a common inherited cause of Fragile X syndrome (FXS) characterized by intellectual disability and autism spectrum disorder (ASD). The FMRP absence-induced altered gene expression in prefrontal cortex (PFC) are associated with autistic behaviors. However, there lacks a large-scale protein profiling in the PFC upon loss of FMRP. This study used a TMT-labeled proteomic analysis to identify a protein profile of the PFC in the Fmr1 knockout mouse. A total of 5886 proteins were identified in the PFC with 100 differentially abundant proteins (DAPs) in response to FMRP deficiency. Bioinformatical analyses showed that these DAPs were mostly enriched in immune system, extracellular part and complement and coagulation cascades. The complement and coagulation cascades include 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG), which are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis linked to activation of immune and inflammatory responses. Thus, our data provide an altered protein profile upon loss of FMRP in the PFC, and suggest that the enhancement of complement and coagulation cascades might contribute to etiological and pathogenic roles of ASD in FXS. SIGNIFICANCE: The etiology of autism spectrum disorder (ASD), a group of neurobiological disorders characterized by deficits in social interaction barriers and other abnormal behaviors, is still elusive. Autistic-like phenotypes are present in both Fragile X syndrome (FXS) patients and FMRP-deficiency FXS models. Given that prefrontal cortex is a critical brain area for social interaction, the FMRP absence induced-changes of a subset of proteins might contribute to ASD in FXS. Using a comprehensive proteomic analysis, this study provides a prefrontal protein profile of the FMRP-absent mouse with a total of 100 differentially abundant proteins (DAPs). Bioinformatic analyses suggest that these DAPs are mainly involved in the regulations of immune system and complement and coagulation cascades. We also show that 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG) in the complement and coagulation cascades are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis regarding dysregulation of immune and inflammatory responses in the prefrontal cortex. Therefore, this study suggests that these FMRP-deficient DAPs in the prefrontal cortex might contribute to the etiology and pathogenesis of ASD in FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Proteômica , Coagulação Sanguínea
12.
J Proteomics ; 269: 104720, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089189

RESUMO

Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Trifosfato de Adenosina/metabolismo , Animais , Ácidos Carboxílicos , Cromatografia Líquida , Citratos , Modelos Animais de Doenças , Metabolismo Energético , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Hipocampo/metabolismo , Lactatos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Proteômica , Espectrometria de Massas em Tandem
13.
Mol Biol Rep ; 38(6): 4153-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21107707

RESUMO

To identify the transcriptional promoters in the proximal regions of human microRNA (miRNA) genes, we analyzed the 5' flanking regions of intergenic miRNAs and intronic miRNAs. With the TSSG program prediction, we found that the ratio of intronic-s miRNA genes with a least one promoter was significantly lower than those of intergenic miRNA genes and intronic-a miRNA genes. More than half of the miRNA genes have only one promoter and less than 20% of the miRNA genes have more than three promoters in the 5-kb upstream regions. All potential promoters are randomly distributed within these regions. Approximately 60% of the miRNA promoters have a TATA-like box, being significantly higher than that of all human promoters. Luciferase reporter assays showed that 22 of the 30 promoters drove gene expression in HEK-293 cells, indicating a high accuracy of the promoter prediction. This study lays a foundation for future investigation into the transcriptional regulatory mechanisms of human miRNA genes.


Assuntos
MicroRNAs/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Pareamento de Bases/genética , Genoma Humano/genética , Células HEK293 , Humanos , Luciferases/metabolismo , TATA Box/genética
14.
Epilepsy Res ; 170: 106533, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385943

RESUMO

Ilepcimide (ICM), a clinically effective antiepileptic drug, has been used in China for decades; however, its antiepileptic mechanism remains unclear. ICM is structurally similar to antiepileptic drug lamotrigine (LTG). LTG exerts its anticonvulsant effect by inhibiting voltage-gated Na+ channel (NaV) activity. Thus it is speculated that ICM also exert its antiepileptic activity by inhibiting sodium channel activity. We studied the inhibition of NaV activity by ICM in acutely isolated mouse hippocampal pyramidal neurons. We evaluated ICM-mediated tonic, concentration-dependent, and voltage-dependent inhibition of NaV, and the effects of ICM and LTG on NaV biophysical properties. Na+ currents in hippocampal pyramidal neurons were tonically inhibited by ICM in a concentration- and voltage-dependent manner. The half-maximal inhibitory concentration (IC50) of ICM at a holding potential (Vh) of -90 mV was higher than that at a Vh of -70 mV. Compared with the control groups, in the presence of 10 µM ICM, the current densities of Na+ channels were reduced, the half-maximal availability of the inactivation curve (V1/2) was shifted to more negative potentials, and the recovery from inactivation was delayed. These data can contribute to further investigation of the inhibitory effect of ICM on the sodium channel, suggesting that the main reason for the anticonvulsant effect of ICM is the small influx of sodium ions. ICM can prevent abnormal discharge of neurons, which may prevent epilepsy.


Assuntos
Neurônios , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Hipocampo/metabolismo , Lamotrigina/farmacologia , Camundongos , Neurônios/metabolismo , Piperidinas , Sódio , Canais de Sódio
15.
Brain Res Bull ; 170: 81-89, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581311

RESUMO

Aberrant expression or dysfunction of a number of genes in the brain contributes to epilepsy, a common neurological disorder characterized by recurrent seizures. Local overexpression of arachidonate lipoxygenase 3 (ALOXE3), a key enzyme for arachidonic acid (AA) metabolic pathway, alleviates seizure severities. However, the relationship between the ALOXE3 gene mutation and epilepsy has not been reported until now. Here we firstly characterized the promoter of human ALOXE3 gene and found that the ALOXE3 promoter could drive luciferase gene expression in the human HEK-293 and SH-SY5Y cells. We then screened the ALOXE3 promoter region and all coding exons from those patients with Dravet syndrome and identified 5 variants c.-163T > C, c.-50C > G, c.-37G > A, c. + 228G > A and c. + 290G > T in the promoter region and one missense variant c.1939A > G (p.I647 V) in the exon. Of these variants in the promoter region, only -50C > G was a novel variant located on the transcriptional factor NFII-I binding element. Luciferase reporter gene analyses indicated that the c.-50C > G could decrease gene expression by preventing the TFII-I's binding. In addition, the variant p.I647 V was conserved among all analyzed species and located within the ALOXE3 functional domain for catalyzing its substrate. In cultured cell lines, overexpression of ALOXE3 significantly decreased the cellular AA levels and overexpression of ALOXE3-I647 V could restore the AA levels, suggesting that the p.I647 V mutant led to a decrease in enzyme activity. Taken together, the present study proposes that the identified ALOXE3 variants potentially contribute to the AA-pathway-mediated epileptogenesis, which should provide a novel avenue for clinical diagnosis of epilepsy.


Assuntos
Encéfalo/metabolismo , Epilepsias Mioclônicas/genética , Lipoxigenase/genética , Mutação , Alelos , Epilepsias Mioclônicas/metabolismo , Células HEK293 , Humanos , Lipoxigenase/metabolismo , Fenótipo , Regiões Promotoras Genéticas
16.
Life Sci ; 272: 119243, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607157

RESUMO

High fat consumption leads to reactive oxygen species (ROS) which is associated with age-progressive neurological disorders. Cu/Zn superoxide dismutase (SOD1) is a critical enzyme against ROS. However, the relationship between SOD1 and the high-fat-induced ROS and neurodegeneration is poorly known. Here we showed that, upon treatment with a saturated fatty acid palmitic acid (PA), the SOD1 activity was decreased in mouse neuronal HT-22 cell line accompanied by elevation of ROS, but not in mouse microglial BV-2 cell line. We further showed that PA decreased the levels of copper chaperone for SOD1 (CCS) in HT-22 cells, which promoted the nuclear import of SOD1 and decreased its activity. We demonstrated that the reduction of CCS is involved in the PA-induced decrease of SOD1 activity and elevation of ROS. In addition, compared with the adult mice fed with a standard diet, the high-fat-diet adult mice presented an increase of plasma free fatty acids, reduction of hippocampal SOD1 activity and CCS, mitochondrial degeneration and long-term memory decline. Taken together, our findings suggest that the high-fat-induced lower CCS level is essential for SOD1 suppression which may be associated with neurodegeneration and cognitive decline.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Chaperonas Moleculares/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Linhagem Celular , China , Cobre/metabolismo , Masculino , Memória , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/fisiologia
17.
Epilepsia ; 51(9): 1669-78, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20550552

RESUMO

PURPOSE: Generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI) are associated with sodium channel α-subunit type-1 gene (SCN1A) mutations. Febrile seizures and partial seizures occur in both GEFS+ and SMEI; sporadic onset and seizure aggravation by antiepileptic drugs (AEDs) are features of SMEI. We thus searched gene mutations in isolated cases of partial epilepsy with antecedent FS (PEFS+) that showed seizure aggravations by AEDs. METHODS: Genomic DNA from four patients was screened for mutations in SCN1A, SCN2A, SCN1B, and GABRG2 using denaturing high-performance liquid chromatography (dHPLC) and sequencing. Whole-cell patch clamp analysis was used to characterize biophysical properties of two newly defined mutants of Na(v) 1.1 in tsA201 cells. RESULTS: Two heterozygous de novo mutations of SCN1A (R946H and F1765L) were detected, which were proven to cause loss of function of Na(v) 1.1. When the functional defects of mutants reported previously are compared, it is found that all mutants from PEFS+ have features of loss of function, whereas GEFS+ shows mild dysfunction excluding loss of function, coincident with mild clinical manifestations. PEFS+ is similar to SMEI clinically with possible AED-induced seizure aggravation and biophysiologically with features of loss of function, and different from SMEI by missense mutation without changes in hydrophobicity or polarity of the residues. CONCLUSIONS: Isolated milder PEFS+ may associate with SCN1A mutations and loss of function of Na(v) 1.1, which may be the basis of seizure aggravation by sodium channel-blocking AEDs. This study characterized phenotypes biologically, which may be helpful in understanding the pathophysiologic basis, and further in management of the disease.


Assuntos
Canalopatias/genética , Epilepsias Mioclônicas/genética , Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Mutação/genética , Convulsões Febris/genética , Canais de Sódio/genética , Adolescente , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Canalopatias/fisiopatologia , Criança , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Feminino , Humanos , Mutação/fisiologia , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fenótipo , Convulsões Febris/fisiopatologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/fisiologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
18.
Mol Biol Rep ; 37(5): 2157-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19669666

RESUMO

Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.


Assuntos
Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Aminoácido Oxirredutases/genética , Plasmídeos Indutores de Tumores em Plantas/genética , Células Procarióticas/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Terminadoras Genéticas , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Recombinação Genética/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
19.
Neurochem Int ; 140: 104847, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927026

RESUMO

Fragile X mental retardation protein (FMRP), strongly associated with fragile X syndrome, plays important roles by regulating gene expression via interacting with other RNA binding proteins in the brain. However, the role of FMRP in hypothalamus, a central part responsible for metabolic control, is poorly known. Our study shows that FMRP is primarily located in the hypothalamic arcuate nucleus (ARC). Using proteomic analysis, we identified 56 up-regulated and 22 down-regulated proteins in the hypothalamus of Map1b KO mice, with microtubule-associated protein 1 B (MAP1B) being the most outstanding increased protein (more than 10 folds). Immunofluorescent assays showed that MAP1B significantly increased in the Map1b-KO ARC, in which the number of agouti-related peptide (AgRP)-staining neurons significantly reduced, but not altered for pro-opiomelanocortin (POMC) neurons. We further showed an age-dependent reduces in food intake and body weight of the KO mice, along with the decreases of MAP1B and AgRP at the same time points. In hypothalamic GT1-7 cells, the AgRP expression decreased upon knockdown of FMRP or overexpression of MAP1B, and increased in response to overexpression of FMRP or knockdown of MAP1B. Co-knockdown or co-overexpression of FMRP and MAP1B led to a reverse expression of AgRP compared to overexpression of knockdown of FMRP alone, demonstrating that MAP1B is essential for the regulatory effect of FMRP on AgRP expression. Taken together, these data suggest that FMRP-deficiency-induced increase of hypothalamic MAP1B and decrease of AgRP might be associated with reduces in food intake and body weight.


Assuntos
Proteína Relacionada com Agouti/biossíntese , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipotálamo/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Proteína Relacionada com Agouti/antagonistas & inibidores , Proteína Relacionada com Agouti/genética , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Regulação para Cima/fisiologia
20.
J Proteomics ; 214: 103633, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911195

RESUMO

Nicotine, a major addictive component in tobacco, plays an important role in the changes of body weight upon smoking and its cessation. Here we showed that nicotine-treated mice exhibited weight loss and nicotine withdrawal led to weight gain. Using TMT-based proteomic analysis, we obtained the different hypothalamic protein profiles in response to nicotine and its withdrawal. A total of ~5000 proteins were identified from the hypothalamus with 50 altered proteins upon 28-day nicotine treatment and 28 altered proteins upon 15-day nicotine withdrawal. Of the altered proteins, CASP3, LCMT2, GRIN2D, CCNT2, FADS3 and MRPS18B were inversely changed in response to nicotine and withdrawal, coincidence with the change of body weight. Of them, CASP3, LCMT2, GRIN2D and CCNT2 were found to be associated with several GO terms and KEGG pathways linking with cell apoptosis, neurotransmission and metabolism. Further Western blot and RT-qPCR analyses confirmed that the levels of the 4 proteins CASP3, LCMT2, GRIN2D and CCNT2, instead of their mRNA transcripts, altered in response to nicotine and withdrawal. Thus this study provides nicotine- and withdrawal-induced hypothalamic protein profiles and suggests potential roles of these altered proteins in the change of body weight. SIGNIFICANCE: Cigarette smoking is one of important factors harming human health. Most smokers tend to have lower body weights and smoking cessation often lead to overweight or obesity, which is an important reason for smokers to insist on smoking. It is known that nicotine, a critical component in tobacco, is associated with the alteration in body weight by affecting hypothalamic function. Through TMT-based proteomic analysis, this study identified differential hypothalamic protein profiles in response to nicotine treatment and its withdrawal, and 4 nicotine- and withdrawal-induced contrary proteins CASP3, LCMT2, GRIN2D and CCNT2 are involved in several enriched GO terms and KEGG pathways, which are associated with cell apoptosis, neurotransmission and metabolism. Our study may provide novel targets for further investigation of the molecular mechanisms of nicotine- and withdrawal-induced alteration in body weight.


Assuntos
Nicotina , Proteoma , Animais , Peso Corporal , Hipotálamo , Camundongos , Nicotina/efeitos adversos , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa