Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148348

RESUMO

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Assuntos
Insuficiência Cardíaca , Hipertensão , Feminino , Animais , Camundongos , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Oxirredução , Cardiomegalia/metabolismo , Hipertensão/complicações , Obesidade/complicações , Ácidos Graxos/metabolismo , Metabolismo Energético
2.
J Pharm Pharm Sci ; 27: 13080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109269

RESUMO

Obesity is a growing public health problem, with its prevalence rate having tripled in the last five decades. It has been shown that obesity is associated with alterations in cardiac energy metabolism, which in turn plays a significant role in heart failure development. During obesity, the heart becomes highly dependent on fatty acid oxidation as its primary source of energy (ATP), while the contribution from glucose oxidation significantly decreases. This metabolic inflexibility is associated with reduced cardiac efficiency and contractile dysfunction. Although it is well recognized that alterations in cardiac energy metabolism during obesity are associated with the risk of heart failure development, the molecular mechanisms controlling these metabolic changes are not fully understood. Recently, posttranslational protein modifications of metabolic enzymes have been shown to play a crucial role in cardiac energy metabolic changes seen in obesity. Understanding these novel mechanisms is important in developing new therapeutic options to treat or prevent cardiac metabolic alteration and dysfunction in obese individuals. This review discusses posttranslational acetylation changes during obesity and their roles in mediating cardiac energy metabolic perturbations during obesity as well as its therapeutic potentials.


Assuntos
Metabolismo Energético , Obesidade , Humanos , Obesidade/metabolismo , Acetilação , Animais , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional
3.
J Pharm Pharm Sci ; 27: 13040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007094

RESUMO

Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.


Assuntos
Aminoácidos de Cadeia Ramificada , Resistência à Insulina , Obesidade , Aminoácidos de Cadeia Ramificada/metabolismo , Humanos , Animais , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
4.
Sci Rep ; 14(1): 1193, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216627

RESUMO

High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.


Assuntos
Lisina , Miocárdio , Ratos , Animais , Miocárdio/metabolismo , Lisina/metabolismo , Ratos Sprague-Dawley , Acetilação , Ácidos Graxos/metabolismo , Coração/fisiologia , Isquemia/metabolismo , Glicólise/fisiologia , Glucose/metabolismo , Oxirredução , Palmitatos/metabolismo
5.
Metabolism ; 154: 155818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369056

RESUMO

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Glucose/metabolismo , Volume Sistólico , Miocárdio/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Cetonas/farmacologia , Cetonas/metabolismo
6.
Biomed Pharmacother ; 171: 116119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181714

RESUMO

AIMS: Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1ß, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1ß, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION: These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.


Assuntos
Insuficiência Cardíaca , Humanos , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Volume Sistólico , Miócitos Cardíacos , Fibrose , Remodelação Ventricular , Camundongos Endogâmicos C57BL
7.
Cardiovasc Res ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691671

RESUMO

AIMS: Cardiac energy metabolism is perturbed in ischemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS: C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending (LAD) coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and ß-hydroxybutyrate (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. RESULTS: Mice with heart failure exhibited a 56% drop in ejection fraction which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet no increase in overall cardiac energy production was observed, and instead there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSIONS: We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischemic heart and a decrease in insulin-stimulated glucose oxidation.

8.
J Am Heart Assoc ; 13(12): e032357, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842296

RESUMO

BACKGROUND: We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS: The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS: VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Potenciais de Ação , Adenina , Arritmias Cardíacas , Piperidinas , Pirazóis , Pirimidinas , Animais , Adenina/análogos & derivados , Adenina/farmacologia , Piperidinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Pirimidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Pirazóis/farmacologia , Masculino , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Cálcio/metabolismo , Ratos , Modelos Animais de Doenças , Ratos Sprague-Dawley , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Sinalização do Cálcio/efeitos dos fármacos , Fatores de Tempo
9.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38193548

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Assuntos
Insuficiência Cardíaca , Masculino , Humanos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Miocárdio/metabolismo , Volume Sistólico , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Cetonas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa