Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 60(3): 233-240, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35710109

RESUMO

BACKGROUND: Monogenic neurodegenerative diseases represent a heterogeneous group of disorders caused by mutations in genes involved in various cellular functions including autophagy, which mediates degradation of cytoplasmic contents by their transport into lysosomes. Abnormal autophagy is associated with hereditary ataxia and spastic paraplegia, amyotrophic lateral sclerosis and frontal dementia, characterised by intracellular accumulation of non-degraded proteins. We investigated the genetic basis of complex HSP in a consanguineous family of Arab-Muslim origin, consistent with autosomal recessive inheritance. METHODS: Exome sequencing was followed by variant filtering and Sanger sequencing for validation and familial segregation. Studies for mRNA and protein expression used real-time PCR and immunoblots. Patients' primary fibroblasts were analysed using electron microscopy, immunofluorescence, western blot analysis and ectopic plasmid expression for its impact on autophagy. RESULTS: We identified a homozygous missense variant in CHMP3 (Chr2:86507484 GRCh38 (NM_016079.4): c.518C>T, p.Thr173Ile), which encodes CHMP3 protein. Segregation analysis validated the presence of the homozygous variant in five affected individuals, while healthy family members were found either heterozygous or wild type for this variant. Primary patient's fibroblasts showed significantly reduced levels of CHMP3. Electron microscopy disclosed accumulation of endosomes, autophagosomes and autolysosomes in patient's fibroblasts, which correlated with higher levels of autophagy markers, p62 and LC3-II. Ectopic expression of wild-type CHMP3 in primary patient fibroblasts led to reduction of the p62 particles accumulation and number of endosomes and autophagosomes compared with control. CONCLUSIONS: Reduced level of CHMP3 is associated with complex spastic paraplegia phenotype, through aberrant autophagy mechanisms.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Proteínas/genética , Paraplegia/genética , Mutação , Autofagia , Linhagem , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
2.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471564

RESUMO

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Assuntos
Apirase , Deficiência Intelectual , Paraplegia Espástica Hereditária , Substância Branca , Apirase/genética , Disartria , Humanos , Deficiência Intelectual/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
3.
BMC Neurol ; 22(1): 369, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163025

RESUMO

BACKGROUND: We report a rare case of ipsilateral multiple cranial neuropathy and ipsilateral lymphadenopathy following mRNA-COVID-19 vaccination. CASE PRESENTATION: A 41-year-old male visited our emergency room complaining of dysphagia and hoarseness that started a week after receiving COVID19 mRNA vaccination (in his right arm). During his hospitalization, he also complained of right side hearing loss and diplopia. Neurological examination depicted a right IV nerve palsy, ipsilateral facial paresthesia and peripheral facial paresis. Otorinolaryngological examination revealed right vocal cord paralysis. A brain magnetic resonance imaging showed enhancement of the right VII and VIII cranial nerves in the auditory canal. The lumbar puncture revealed increased protein concentration and lymphocytic pleocytosis in the cerebrospinal fluid (CSF). Additionally, a neck computed tomography (CT) scan showed a swollen right supraclavicular lymph node. We hypothesize that the ipsilateral cranial neuropathies of IV, VI, VII, VIII and X, associated with cervical lymphadenopathy, was possible caused by a post-vaccination immune-mediated reaction. The patient was treated with a 5-day course of intravenous methylprednisolone (1000 mg/day), and a gradual improvement was observed. CONCLUSIONS: Similarly, to other vaccines, it is possibly that also mRNA vaccines may act as triggers of non-specific autoimmune neurological syndromes.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Doenças dos Nervos Cranianos , Paralisia Facial , Linfadenopatia , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Doenças dos Nervos Cranianos/diagnóstico , Doenças dos Nervos Cranianos/tratamento farmacológico , Doenças dos Nervos Cranianos/etiologia , Paralisia Facial/etiologia , Humanos , Linfadenopatia/complicações , Masculino , Metilprednisolona , RNA Mensageiro
4.
Neurogenetics ; 22(2): 117-125, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811585

RESUMO

We report a multiplex family with extended multisystem neurological phenotype associated with a CRYAB variant. Two affected siblings were evaluated with whole exome sequencing, muscle biopsy, laser microdissection, and mass spectrometry-based proteomic analysis. Both patients and their mother manifested a combination of early-onset cataracts, cardiomyopathy, cerebellar ataxia, optic atrophy, cognitive impairment, and myopathy. Whole exome sequencing identified a heterozygous c.458C>T variant mapped to the C-terminal extension domain of the Alpha-crystallin B chain, disrupting its function as a molecular chaperone and its ability to suppress protein aggregation. In accordance with the molecular findings, muscle biopsies revealed subsarcolemmal deposits that appeared dark with H&E and trichrome staining were negative for the other routine histochemical staining and for amyloid with the Congo-red stain. Electron microscopy demonstrated that the deposits were composed of numerous parallel fibrils. Laser microdissection and mass spectrometry-based proteomic analysis revealed that the inclusions are almost exclusively composed of crystallized chaperones/heat shock proteins. Moreover,  a structural model suggests that Ser153 could be involved in monomer stabilization, dimer association, and possible binding of partner proteins. We propose that our report potentially expands the complex phenotypic spectrum of alpha B-crystallinopathies with possible effect of a CRYAB variant on the central nervous system.


Assuntos
Cardiomiopatia Hipertrófica/genética , Catarata/genética , Ataxia Cerebelar/genética , Disfunção Cognitiva/genética , Atrofia Óptica/genética , Sarcolema/ultraestrutura , Cadeia B de alfa-Cristalina/genética , Sequência de Aminoácidos , Biópsia , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Corpos de Inclusão/ultraestrutura , Judeus/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Debilidade Muscular/genética , Músculo Esquelético/patologia , Fenótipo , Conformação Proteica , Sequenciamento do Exoma
5.
Clin Genet ; 99(5): 713-718, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491183

RESUMO

POLR3A encodes the largest subunit of the DNA-dependent RNA polymerase III. Pathogenic variants in this gene are associated with dysregulation of tRNA production and other non-coding RNAs. POLR3A-related disorders include variable phenotypes. The genotype-phenotype correlation is still unclear. Phenotypic analysis and exome sequencing were performed in four affected siblings diagnosed clinically with hereditary spastic ataxia, two healthy siblings and their unaffected mother. All four affected siblings (ages 46-55) had similar clinical features of early childhood-onset hypodontia and adolescent-onset progressive spastic ataxia. None had progeria, gonadal dysfunction or dysmorphism. All affected individuals had biallelic POLR3A pathogenic variants composed by two cis-acting intronic splicing-altering variants, c.1909 + 22G > A and c.3337-11 T > C. The two healthy siblings had wild-type alleles. The mother and another unaffected sibling were heterozygous for the allele containing both variants. This is the first report addressing the clinical consequence associated with homozygosity for a unique pathogenic intronic allele in the POLR3A gene. This allele was previously reported in compound heterozygous combinations in patients with Wiedemann-Rautenstrauch syndrome, a severe progeroid POLR3A-associated phenotype. We show that homozygosity for this allele is associated with spastic ataxia with hypodontia, and not with progeroid features. These findings contribute to the characterization of genotype-phenotype correlation in POLR3A-related disorders.


Assuntos
Anodontia/genética , Deficiência Intelectual/genética , Íntrons/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , RNA Polimerase III/genética , Ataxias Espinocerebelares/genética , Alelos , Anodontia/complicações , Anodontia/diagnóstico por imagem , Anodontia/enzimologia , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/enzimologia , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/complicações , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/enzimologia , Atrofia Óptica/complicações , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/enzimologia , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/enzimologia
6.
Neurol Sci ; 42(5): 1933-1940, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32974798

RESUMO

BACKGROUND: Lymphoma of the nervous system is rare and usually involves the brain, spinal cord, or peripheral nerves. Hence, it has varied clinical presentations, and correct diagnosis is often challenging. Incorrect diagnosis delays the appropriate treatment and affects prognosis. We report 5 patients with delayed diagnosis of lymphoma involving the central and/or peripheral nervous system, initially evaluated for other neurological diagnoses. We also discuss the challenge of diagnosis and appropriate testing. METHODS: Retrospective review of 2011-2019 records of patients with confirmed nervous system lymphoma diagnosed in a tertiary care medical center. RESULTS: We present 5 adult patients initially evaluated for inflammatory myelopathy, inflammatory lumbosacral plexopathy, atypical parkinsonism, and demyelinating disease of the CNS. Final diagnosis of the nervous system lymphoma was delayed by 4 to 18 months and was based on tissue biopsy in 4, and on CSF and bone marrow examination in 1 patient. CONCLUSIONS: Lymphoma may imitate various central and peripheral nervous system disorders. We suggest several red flags that indicate the need to consider lymphoma, including subacute but progressive symptomatic evolution, painful neurological deficit, unclear clinical diagnosis, and transient steroid responsiveness. Correct diagnosis often requires a combination of diagnostic tests, while pathology testing is crucial for early diagnosis and is strongly recommended in the appropriate clinical setting.


Assuntos
Linfoma , Adulto , Encéfalo , Erros de Diagnóstico , Humanos , Linfoma/diagnóstico , Estudos Retrospectivos , Medula Espinal
7.
Acta Neuropathol ; 140(5): 765-776, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895736

RESUMO

Replication repair deficiency (RRD) leading to hypermutation is an important driving mechanism of high-grade glioma (HGG) occurring predominantly in the context of germline mutations in RRD-associated genes. Although HGG presents specific patterns of DNA methylation corresponding to oncogenic mutations, this has not been well studied in replication repair-deficient tumors. We analyzed 51 HGG arising in the background of gene mutations in RRD utilizing either 450 k or 850 k methylation arrays. These were compared with HGG not known to be from patients with RRD. RRD HGG harboring secondary mutations in glioma genes such as IDH1 and H3F3A displayed a methylation pattern corresponding to these methylation subgroups. Strikingly, RRD HGG lacking these known secondary mutations clustered together with an incompletely described group of HGG previously labeled "Wild type-C" or "Paediatric RTK 1". Independent analysis of two comparator HGG cohorts showed that other RRD/hypermutant tumors clustered within these subgroups, suggesting that undiagnosed RRD may be driving some HGG clustering in this location. RRD HGG displayed a unique CpG Island Demethylator Phenotype in contrast to the CpG Island Methylator Phenotype described in other cancers. Hypomethylation was enriched at gene promoters with prominent demethylation in genes and pathways critical to cellular survival including cell cycle, gene expression, cellular metabolism, and organization. These data suggest that methylation arrays may provide diagnostic information for the detection of RRD HGG. Furthermore, our findings highlight the unique natural selection pressures in these highly dysregulated, hypermutant cancers and provide the novel impact of hypermutation and RRD on the cancer epigenome.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Distúrbios no Reparo do DNA/genética , Reparo do DNA/genética , Glioma/genética , Adolescente , Adulto , Criança , Pré-Escolar , Distúrbios no Reparo do DNA/complicações , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Adulto Jovem
8.
Endocr Pract ; 26(10): 1131-1142, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33471715

RESUMO

OBJECTIVE: Von Hippel-Lindau (VHL) syndrome is a rare and complex disease. In 1996, we described a 3 generation VHL 2A kindred with 11 mutation carriers. We aim to share our experience regarding the long-term follow-up of this family and the management of all our other VHL patients focusing on frequently encountered neuroendocrine neoplasms: pheochromocytoma/paraganglioma and pancreatic neuroendocrine neoplasms (PNEN). METHODS: All VHL patients in follow-up at our tertiary center from 1980 to 2019 were identified. Clinical, laboratory, imaging, and therapeutic characteristics were retrospectively analyzed. RESULTS: We identified 32 VHL patients in 16 different families, 7/16 were classified as VHL 2 subtype. In the previously described family, the 4 initially asymptomatic carriers developed a neuroendocrine tumor; 7 new children were born, 3 of them being mutation carriers; 2 patients died, 1 due to metastatic PNEN-related liver failure. Pheochromocytoma was frequent (22/32), bilateral (13/22;59%), often diagnosed in early childhood when active screening was timely performed, associated with paraganglioma in 5/22, rarely malignant (1/22), and recurred after surgery in some cases after more than 20 years. PNEN occurred in 8/32 patients (25%), and was metastatic in 3 patients. Surgery and palliative therapy allowed relatively satisfactory outcomes. Severe disabling morbidities due to central-nervous system and ophthalmologic hemangiomas, and other rare tumors as chondrosarcoma in 2 patients and polycythemia in 1 patient were observed. CONCLUSION: A multidisciplinary approach and long-term follow-up is mandatory in VHL patients to manage the multiple debilitating morbidities and delay mortality in these complex patients.


Assuntos
Neoplasias das Glândulas Suprarrenais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Doença de von Hippel-Lindau , Neoplasias das Glândulas Suprarrenais/epidemiologia , Neoplasias das Glândulas Suprarrenais/terapia , Criança , Pré-Escolar , Humanos , Recidiva Local de Neoplasia , Tumores Neuroendócrinos/epidemiologia , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/terapia , Estudos Retrospectivos , Proteína Supressora de Tumor Von Hippel-Lindau , Doença de von Hippel-Lindau/epidemiologia , Doença de von Hippel-Lindau/genética
9.
Curr Neurol Neurosci Rep ; 19(10): 70, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31440850

RESUMO

PURPOSE OF REVIEW: Until recently, the gene associated with the recessive form of familial brain calcification (PFBC, Fahr disease) was unknown. MYORG, a gene that causes recessive PFBC was only recently discovered and is currently the only gene associated with a recessive form of this disease. Here, we review the radiological and clinical findings in adult MYORG mutation homozygous and heterozygous individuals. RECENT FINDINGS: MYORG was shown to be the cause of a large fraction of recessive cases of PFBC in patients of different ethnic populations. Pathogenic mutations include inframe insertions and deletions in addition to nonsense and missense mutations that are distributed throughout the entire MYORG coding region. Homozygotes have extensive brain calcification in all known cases, whereas in some carriers of heterozygous mutation, punctuated calcification of the globus pallidus is demonstrated. The clinical spectrum in homozygotes ranges from the lack of neurological symptoms to severe progressive neurological syndrome with bulbar and cerebellar signs, parkinsonism and other movement disorders, and cognitive impairments. Heterozygotes are clinically asymptomatic. MYORG is a transmembrane protein localized to the endoplasmic reticulum and is mainly expressed in astrocytes. While the biochemical pathways of the protein are still unknown, information from its evolution profile across hundreds of species (phylogenetic profiling) suggests a role for MYORG in regulating ion homeostasis via its glycosidase domain. MYORG mutations are a major cause for recessive PFBC in different world populations. Future studies are required in order to reveal the cellular role of the MYORG protein.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Adulto , Doenças dos Gânglios da Base , Calcinose , Glicosídeo Hidrolases , Heterozigoto , Humanos , Masculino , Mutação , Doenças Neurodegenerativas , Linhagem , Filogenia
11.
J Neurooncol ; 137(3): 601-609, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29332184

RESUMO

Immune checkpoint inhibitors (ICPIs) have recently emerged as a novel treatment for cancer. These agents, transforming the field of oncology, are not devoid of toxicity and cause immune-related side effects which can involve any organ including the nervous system. In this study, we present 9 patients (7 men and 2 women) with neurologic complications secondary to ICPI treatment. These included meningoencephalitis, limbic encephalitis, polyradiculitis, cranial polyneuropathy, myasthenic syndrome and myositis. Four patients received dual ICPI therapy comprised of programmed cell death-1 and cytotoxic lymphocyte associated protein-4 blocking antibodies. Median time to onset of neurologic adverse event during immune checkpoint inhibitor treatment was 8 weeks (range 5 days-19 weeks). In all patients ICPIs were stopped and corticosteroids were initiated, resulting in a marked improvement in seven out of nine patients. Two patients, one with myositis and one with myasthenic syndrome, died. In two patients ICPI therapy was resumed after resolution of the neurological adverse event with no additional neurologic complications. This series highlights the very broad spectrum of neurological complications of ICPIs, emphasizes the need for expedited diagnosis and suggests that withholding treatment early, accompanied with steroid therapy, carries the potential of complete resolution of the neurological immune-mediated condition. Thus, a high level of suspicion and rapid initiation of corticosteroids are mandatory to prevent uncontrolled clinical deterioration, which might be fatal.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Adulto , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Evolução Fatal , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/mortalidade , Doenças do Sistema Nervoso/patologia , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
12.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28827282

RESUMO

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Assuntos
Fibroblastos/enzimologia , Doença de Depósito de Glicogênio , Glicogênio Sintase/metabolismo , Doenças do Sistema Nervoso , Adulto , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/enzimologia , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
13.
J Lipid Res ; 58(8): 1598-1612, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630259

RESUMO

Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.


Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Materiais Biomiméticos/uso terapêutico , Estabilidade Enzimática , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica/efeitos dos fármacos , Temperatura
14.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26199317

RESUMO

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doença de Depósito de Glicogênio/enzimologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/enzimologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Biologia Computacional , Sistema da Enzima Desramificadora do Glicogênio/efeitos dos fármacos , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Dados de Sequência Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
15.
J Neurooncol ; 129(3): 453-460, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27377654

RESUMO

Patients with progressive primary brain tumors (PBT) are attracted to promising new treatments, even prior to convincing data. Anti-PD1 immunotherapies have been in the spotlight since publication of groundbreaking results for metastatic melanoma with pembrolizumab (PBL). Our objective was to report on the response and toxicity of PBL in patients with advanced PBT. We retrospectively reviewed the charts of 22 patients (17 adults and 5 children) with recurrent central nervous system tumors treated with PBL. We analyzed prior antineoplastic therapies, steroid usage, and outcomes. Patients received a median of two neoplastic therapies prior to PBL, and a median of three infusions of PBL in adults and four in children. Twelve patients (9 adults and 3 children) started PBL on steroids (median dose in adults 4 mg; range 2-8, and in children 1.5 mg, range 0.5-4) and five patients received steroids later during PBL treatment. Twelve patients (10 adults and 2 children) received concomitant bevacizumab with PBL. Side effects were minimal. All patients showed progressive tumor growth during therapy. Median OS from the start of PBL was 2.6 months in adults and 3.2 months in children. Two GB patients underwent tumor resection following treatment with PBL. Tumor-lymphocytic response in these cases was unremarkable, and PD-L1 immuno-staining was negative. In this series of 22 patients with recurrent primary brain tumors, PBL showed no clinical or histologic efficacy. We do not recommend further use of PBL for recurrent PBT unless convincing prospective clinical trial data are published.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Resultado do Tratamento , Adulto , Idoso , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
16.
J Neurooncol ; 130(1): 211-219, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27531351

RESUMO

Genomic research of high grade glioma (HGG) has revealed complex biology with potential for therapeutic impact. However, the utilization of this information and impact upon patient outcome has yet to be assessed. We performed capture-based next generation sequencing (NGS) genomic analysis assay of 236/315 cancer-associated genes, with average depth of over 1000 fold, to guide treatment in HGG patients. We reviewed clinical utility and response rates in correlation to NGS results. Forty-three patients were profiled: 34 glioblastomas, 8 anaplastic astrocytomas, and one patient with anaplastic oligodendroglioma. Twenty-five patients were profiled with the 315 gene panel. The median number of identified genomic alterations (GAs) per patient was 4.5 (range 1-23). In 41 patients (95 %) at least one therapeutically-actionable GA was detected, most commonly in EGFR [17 (40 %)]. Genotype-directed treatments were prescribed in 13 patients, representing a 30 % treatment decision impact. Treatment with targeted agents included everolimus as a single agent and in combination with erlotinib; erlotinib; afatinib; palbociclib; trametinib and BGJ398. Treatments targeted various genomic findings including EGFR alterations, mTOR activation, cell cycle targets and FGFR1 mutations. None of the patients showed response to respective biologic treatments. In this group of patients with HGG, NGS revealed a high frequency of GAs that lead to targeted treatment in 30 % of the patients. The lack of response suggests that further study of mechanisms of resistance in HGG is warranted before routine use of biologically-targeted agents based on NGS results.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/genética , Genômica/métodos , Glioma/genética , Resultado do Tratamento , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Estudos de Coortes , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Everolimo/uso terapêutico , Feminino , Glioma/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
17.
J Inherit Metab Dis ; 39(1): 115-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025547

RESUMO

BACKGROUND: Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare inborn defect disturbing the remethylation of homocysteine to methionine (<200 reported cases). This retrospective study evaluates clinical, biochemical genetic and in vitro enzymatic data in a cohort of 33 patients. METHODS: Clinical, biochemical and treatment data was obtained from physicians by using a questionnaire. MTHFR activity was measured in primary fibroblasts; genomic DNA was extracted from cultured fibroblasts. RESULTS: Thirty-three patients (mean age at follow-up 11.4 years; four deceased; median age at first presentation 5 weeks; 17 females) were included. Patients with very low (<1.5%) mean control values of enzyme activity (n = 14) presented earlier and with a pattern of feeding problems, encephalopathy, muscular hypotonia, neurocognitive impairment, apnoea, hydrocephalus, microcephaly and epilepsy. Patients with higher (>1.7-34.8%) residual enzyme activity had mainly psychiatric symptoms, mental retardation, myelopathy, ataxia and spasticity. Treatment with various combinations of betaine, methionine, folate and cobalamin improved the biochemical and clinical phenotype. During the disease course, patients with very low enzyme activity showed a progression of feeding problems, neurological symptoms, mental retardation, and psychiatric disease while in patients with higher residual enzyme activity, myelopathy, ataxia and spasticity increased. All other symptoms remained stable or improved in both groups upon treatment as did brain imaging in some cases. No clear genotype-phenotype correlation was obvious. DISCUSSION: MTHFR deficiency is a severe disease primarily affecting the central nervous system. Age at presentation and clinical pattern are correlated with residual enzyme activity. Treatment alleviates biochemical abnormalities and clinical symptoms partially.


Assuntos
Homocistinúria/enzimologia , Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular/enzimologia , Espasticidade Muscular/genética , Ataxia/genética , Betaína/uso terapêutico , Criança , Feminino , Ácido Fólico/uso terapêutico , Estudos de Associação Genética/métodos , Homocistinúria/tratamento farmacológico , Humanos , Deficiência Intelectual/genética , Masculino , Metionina/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Mutação/genética , Fenótipo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/enzimologia , Transtornos Psicóticos/genética , Estudos Retrospectivos , Doenças da Medula Espinal/genética , Vitamina B 12/uso terapêutico
18.
Pediatr Blood Cancer ; 63(3): 418-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26544533

RESUMO

BACKGROUND: Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. PROCEDURE: We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. RESULTS: In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CONCLUSIONS: CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Consanguinidade , Reparo de Erro de Pareamento de DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Efeito Fundador , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Adolescente , Manchas Café com Leite/genética , Criança , Pré-Escolar , Feminino , Humanos , Imuno-Histoquímica , Israel , Linfoma/genética , Masculino , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Mutação , Linhagem , Adulto Jovem
19.
Brain ; 138(Pt 9): 2521-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26179919

RESUMO

Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.


Assuntos
Mutação/genética , Glicoproteína Associada a Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Adulto , Conexinas/genética , Análise Mutacional de DNA , Retículo Endoplasmático/metabolismo , Saúde da Família , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteína Proteolipídica de Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Transporte Proteico/genética , Proteômica , Proteínas S100/metabolismo , Nervo Sural/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa