Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
2.
Lancet ; 389(10074): 1151-1164, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-27856085

RESUMO

The Lancet Countdown: tracking progress on health and climate change is an international, multidisciplinary research collaboration between academic institutions and practitioners across the world. It follows on from the work of the 2015 Lancet Commission, which concluded that the response to climate change could be "the greatest global health opportunity of the 21st century". The Lancet Countdown aims to track the health impacts of climate hazards; health resilience and adaptation; health co-benefits of climate change mitigation; economics and finance; and political and broader engagement. These focus areas form the five thematic working groups of the Lancet Countdown and represent different aspects of the complex association between health and climate change. These thematic groups will provide indicators for a global overview of health and climate change; national case studies highlighting countries leading the way or going against the trend; and engagement with a range of stakeholders. The Lancet Countdown ultimately aims to report annually on a series of indicators across these five working groups. This paper outlines the potential indicators and indicator domains to be tracked by the collaboration, with suggestions on the methodologies and datasets available to achieve this end. The proposed indicator domains require further refinement, and mark the beginning of an ongoing consultation process-from November, 2016 to early 2017-to develop these domains, identify key areas not currently covered, and change indicators where necessary. This collaboration will actively seek to engage with existing monitoring processes, such as the UN Sustainable Development Goals and WHO's climate and health country profiles. The indicators will also evolve over time through ongoing collaboration with experts and a range of stakeholders, and be dependent on the emergence of new evidence and knowledge. During the course of its work, the Lancet Countdown will adopt a collaborative and iterative process, which aims to complement existing initiatives, welcome engagement with new partners, and be open to developing new research projects on health and climate change.


Assuntos
Mudança Climática , Saúde Global , Política de Saúde , Conservação dos Recursos Naturais , Biomarcadores Ambientais , Humanos
7.
Lancet ; 391(10120): 581-630, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29096948
8.
Sci Am ; 316(5): 21, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28437414
10.
Lancet Planet Health ; 5(2): e74-e83, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33581069

RESUMO

BACKGROUND: nationally determined contributions (NDCs) serve to meet the goals of the Paris Agreement of staying "well below 2°C", which could also yield substantial health co-benefits in the process. However, existing NDC commitments are inadequate to achieve this goal. Placing health as a key focus of the NDCs could present an opportunity to increase ambition and realise health co-benefits. We modelled scenarios to analyse the health co-benefits of NDCs for the year 2040 for nine representative countries (ie, Brazil, China, Germany, India, Indonesia, Nigeria, South Africa, the UK, and the USA) that were selected for their contribution to global greenhouse gas emissions and their global or regional influence. METHODS: Modelling the energy, food and agriculture, and transport sectors, and mortality related to risk factors of air pollution, diet, and physical activity, we analysed the health co-benefits of existing NDCs and related policies (ie, the current pathways scenario) for 2040 in nine countries around the world. We compared these health co-benefits with two alternative scenarios, one consistent with the goal of the Paris Agreement and the Sustainable Development Goals (ie, the sustainable pathways scenario), and one in line with the sustainable pathways scenario, but also placing health as a central focus of the policies (ie, the health in all climate policies scenario). FINDINGS: Compared with the current pathways scenario, the sustainable pathways scenario resulted in an annual reduction of 1·18 million air pollution-related deaths, 5·86 million diet-related deaths, and 1·15 million deaths due to physical inactivity, across the nine countries, by 2040. Adopting the more ambitious health in all climate policies scenario would result in a further reduction of 462 000 annual deaths attributable to air pollution, 572 000 annual deaths attributable to diet, and 943 000 annual deaths attributable to physical inactivity. These benefits were attributable to the mitigation of direct greenhouse gas emissions and the commensurate actions that reduce exposure to harmful pollutants, as well as improved diets and safe physical activity. INTERPRETATION: A greater consideration of health in the NDCs and climate change mitigation policies has the potential to yield considerable health benefits as well as achieve the "well below 2°C" commitment across a range of regional and economic contexts. FUNDING: This work was in part funded through an unrestricted grant from the Wellcome Trust (award number 209734/Z/17/Z) and supported by an Engineering and Physical Sciences Research Council grant (grant number EP/R035288/1).


Assuntos
Mudança Climática , Cooperação Internacional/legislação & jurisprudência , Modelos Teóricos , Saúde Pública , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Dieta , Política Ambiental , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/análise , Humanos , Desenvolvimento Sustentável , Meios de Transporte
11.
Lancet Planet Health ; 2(5): e202-e213, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29709284

RESUMO

BACKGROUND: Climate change poses a dangerous and immediate threat to the health of populations in the UK and worldwide. We aimed to model different scenarios to assess the health co-benefits that result from mitigation actions. METHODS: In this modelling study, we combined a detailed techno-economic energy systems model (UK TIMES), air pollutant emission inventories, a sophisticated air pollution model (Community Multi-scale Air Quality), and previously published associations between concentrations and health outcomes. We used four scenarios and focused on the air pollution implications from fine particulate matter (PM2·5), nitrogen dioxide (NO2) and ozone. The four scenarios were baseline, which assumed no further climate actions beyond those already achieved and did not meet the UK's Climate Change Act (at least an 80% reduction in carbon dioxide equivalent emissions by 2050 compared with 1990) target; nuclear power, which met the Climate Change Act target with a limited increase in nuclear power; low-greenhouse gas, which met the Climate Change Act target without any policy constraint on nuclear build; and a constant scenario that held 2011 air pollutant concentrations constant until 2050. We predicted the health and economic impacts from air pollution for the scenarios until 2050, and the inequalities in exposure across different socioeconomic groups. FINDINGS: NO2 concentrations declined leading to 4 892 000 life-years saved for the nuclear power scenario and 7 178 000 life-years saved for the low-greenhouse gas scenario from 2011 to 2154. However, the associations that we used might overestimate the effects of NO2 itself. PM2·5 concentrations in Great Britain are predicted to decrease between 42% and 44% by 2050 compared with 2011 in the scenarios that met the Climate Change Act targets, especially those from road traffic and off-road machinery. These reductions in PM2·5 are tempered by a 2035 peak (and subsequent decline) in biomass (wood burning), and by a large, projected increase in future demand for transport leading to potential increases in non-exhaust particulate matter emissions. The potential use of biomass in poorly controlled technologies to meet the Climate Change Act commitments would represent an important missed opportunity (resulting in 472 000 more life-years lost from PM2·5 in the low-greenhouse gas scenario and 1 122 000 more life-years lost in the nuclear power scenario from PM2·5 than the baseline scenario). Although substantial overall improvements in absolute amounts of exposure are seen compared with 2011, these outcomes mask the fact that health inequalities seen (in which socioeconomically disadvantaged populations are among the most exposed) are projected to be maintained up to 2050. INTERPRETATION: The modelling infrastructure created will help future researchers explore a wider range of climate policy scenarios, including local, European, and global scenarios. The need to strengthen the links between climate change policy objectives and public health imperatives, and the benefits to societal wellbeing that might result is urgent. FUNDING: National Institute for Health Research.


Assuntos
Poluição do Ar/análise , Mudança Climática , Fontes Geradoras de Energia , Modelos Teóricos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Humanos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Reino Unido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa