Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339694

RESUMO

Metal oxide semiconductor hetero- and homojunctions are commonly constructed to improve the performance of hydrogen sensors at room temperature. In this study, a simple two-step hydrothermal method was employed to prepare TiO2 films with homojunctions of rutile and anatase phases (denoted as TiO2-R/A). Then, the microstructure of anatase-phase TiO2 was altered by controlling the amount of hydrochloric acid to realize a more favorable porous structure for charge transport and a larger surface area for contact with H2. The sensor used a Pt interdigital electrode. At an optimal HCl dosage (25 mL), anatase-phase TiO2 uniformly covered rutile-phase TiO2 nanorods, resulting in a greater response to H2 at 2500 ppm compared with that of a rutile TiO2 nanorod sensor by a factor of 1153. The response time was 21 s, mainly because the homojunction formed by the TiO2 rutile and anatase phases increased the synergistic effect of the charge transfer and potential barrier between the two phases, resulting in the formation of more superoxide (O2-) free radicals on the surface. Furthermore, the porous structure increased the surface area for H2 adsorption. The TiO2-R/A-based sensor exhibited high selectivity, long-term stability, and a fast response. This study provides new insights into the design of commercially competitive hydrogen sensors.

2.
Opt Express ; 22(24): 29292-303, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606863

RESUMO

We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence.


Assuntos
Disprósio/química , Fótons , Teoria Quântica , Silício/química , Túlio/química , Cristalização , Luminescência , Eletricidade Estática , Termodinâmica
3.
Nanoscale ; 14(44): 16560-16571, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314646

RESUMO

ZnCo2O4 has attracted extensive attention as a bimetallic transition metal oxide anode material for lithium-ion batteries (LIBs) with high capacity. However, there is still a long way to go to meet the increasing demand for commercial batteries due to their modest conductivity and unobtrusive cycling stability. The use of finely controlled nanostructures and combination with other anode materials are the two main ways to improve the battery performance of ZnCo2O4. Herein, ZnCo2O4 (ZCO) nanosheets were in situ grown on carbon cloth (CC) through a facile solution method. Si was coated onto the ZCO nanosheet arrays by the magnetron sputtering method (SCZO/CC) to acheive the capacity increase. A layer of C was further coated onto SZCO/CC to improve the electrical conductivity of the whole electrode and to protect the SZCO nanostructure. The obtained CSZCO/CC electrode exhibits a high reversible areal capacity of 1.16 mA h cm-2 at 5 mA cm-2 after 500 cycles. At an ultra-high current density of 10 mA cm-2, the CSZCO/CC electrode can still present a capacity of 0.38 mA h cm-2 and maintain a capacity retention of 88.4% for 2000 cycles. In situ Raman spectroscopy was used to study the relationship between the electrochemical performance and structure of the electrode materials. The carbon cloth was found to have contributed a nonnegligible part of the capacity of the electrode.

4.
Opt Lett ; 36(2): 169-71, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21263489

RESUMO

We report on photoluminescence in the 1.7-2.1 µm range of silicon doped with thulium. This is achieved by the implantation of Tm into silicon that has been codoped with boron to reduce the thermal quenching. At least six strong lines can be distinguished at 80 K; at 300 K, the spectrum is dominated by the main emission at 2 µm. These emissions are attributed to the trivalent Tm(3+) internal transitions between the first excited state and the ground state.


Assuntos
Olho , Medições Luminescentes , Segurança , Silício/química , Túlio/química , Humanos , Luminescência/efeitos adversos , Temperatura
5.
ACS Appl Mater Interfaces ; 13(21): 25472-25482, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34024092

RESUMO

Pt decoration is known to be one of the most promising strategies to enhance the performance of TiO2 hydrogen gas sensors, while the effect of Pt-decorating concentration on the sensing performance of TiO2 and the specific interaction between Pt and TiO2 have not been fully investigated. Here, a series of TiO2 nanoarray thin films with differing amounts of Pt decorated (Pt/TiO2) is fabricated, and the H2-sensing performance is evaluated. A switch in the response from P-type to N-type is observed with increasing Pt decoration. The response additionally depends on the H2 concentration: resistance increases in low H2 concentrations and decreases in hydrogen concentrations higher than 40 ppm. This is explained by the competitive adsorption of hydrogen between the Pt nanoparticles (Pt NPs) and the exposed TiO2 surface. The preference for H2 adsorption and splitting between Pt and TiO2 is established by DFT calculations. Humidity brings preferential adsorption of H2O on the surface of Pt, which affects the following adsorption and splitting of H2, thus resulting in a P-N switch of the sensing performance. The detailed dynamic reaction process is described according to the findings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa