Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phys Rev Lett ; 127(11): 110503, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558958

RESUMO

Hybrid quantum-classical variational algorithms such as the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) are promising applications for noisy, intermediate-scale quantum computers. Both VQE and QAOA variationally extremize the expectation value of a Hamiltonian. All work to date on VQE and QAOA has been limited to Pauli representations of Hamiltonians. However, many cases exist in which a sparse representation of the Hamiltonian is known but there is no efficient Pauli representation. We extend VQE to general sparse Hamiltonians. We provide a decomposition of a fermionic second-quantized Hamiltonian into a number of one-sparse, self-inverse, Hermitian terms linear in the number of ladder operator monomials in the second-quantized representation. We provide a decomposition of a general d-sparse Hamiltonian into O(d^{2}) such terms. In both cases, a single sample of any term can be obtained using two ansatz state preparations and at most six oracle queries. The number of samples required to estimate the expectation value to precision ε scales as ε^{-2} as for Pauli-based VQE. This widens the domain of applicability of VQE to systems whose Hamiltonian and other observables are most efficiently described in terms of sparse matrices.

2.
Entropy (Basel) ; 23(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073880

RESUMO

We present example quantum chemistry programs written with JaqalPaq, a python meta-programming language used to code in Jaqal (Just Another Quantum Assembly Language). These JaqalPaq algorithms are intended to be run on the Quantum Scientific Computing Open User Testbed (QSCOUT) platform at Sandia National Laboratories. Our exemplars use the variational quantum eigensolver (VQE) quantum algorithm to compute the ground state energies of the H2, HeH+, and LiH molecules. Since the exemplars focus on how to program in JaqalPaq, the calculations of the second-quantized Hamiltonians are performed with the PySCF python package, and the mappings of the fermions to qubits are obtained from the OpenFermion python package. Using the emulator functionality of JaqalPaq, we emulate how these exemplars would be executed on an error-free QSCOUT platform and compare the emulated computation of the bond-dissociation curves for these molecules with their exact forms within the relevant basis.

3.
Entropy (Basel) ; 23(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066258

RESUMO

We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization (BLFQ) framework. The BLFQ formulation of quantum field theory allows one to readily import techniques developed for digital quantum simulation of quantum chemistry. This provides a method that can be scaled up to simulation of full, relativistic quantum field theories in the quantum advantage regime. As an illustration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBM Vigo chip. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.

4.
Phys Rev Lett ; 123(20): 200501, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809115

RESUMO

Contextuality is an indicator of nonclassicality, and a resource for various quantum procedures. In this Letter, we use contextuality to evaluate the variational quantum eigensolver (VQE), one of the most promising tools for near-term quantum simulation. We present an efficiently computable test to determine whether or not the objective function for a VQE procedure is contextual. We apply this test to evaluate the contextuality of experimental implementations of VQE, and determine that several, but not all, fail this test of quantumness.

5.
J Chem Theory Comput ; 19(3): 808-821, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689668

RESUMO

Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilize even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning of the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE); however, there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz, a parametrized quantum state over which we optimize during VQE; it is not initially clear how a splitting of the Hamiltonian should be reflected in the CS-VQE ansätze. We propose a "noncontextual projection" approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator and demonstrate chemically precise ground state energy calculations for a suite of small molecules at a significant reduction in the required qubit count and circuit depth.

6.
J Chem Phys ; 137(22): 224109, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23248989

RESUMO

Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002); e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H(2) requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.

7.
J Chem Phys ; 137(7): 074112, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22920108

RESUMO

We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Teoria Quântica , Complexos de Proteínas Captadores de Luz/metabolismo
8.
Proc Natl Acad Sci U S A ; 105(48): 18681-6, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033207

RESUMO

The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born-Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits.


Assuntos
Algoritmos , Físico-Química , Teoria Quântica , Simulação por Computador , Modelos Químicos
9.
J Chem Theory Comput ; 14(11): 5617-5630, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30189144

RESUMO

The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper, we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems, which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation and results in substantially reduced gate count estimates when performing limited circuit optimizations.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 2): 025103, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14525035

RESUMO

We demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The required H function has the form of the Burg entropy for D=2, and of a Tsallis entropy with q=1-(2/D) for D>2, where D is the number of spatial dimensions. We use this observation to construct a fully explicit, unconditionally stable, Galilean-invariant, lattice-Boltzmann model for the incompressible Navier-Stokes equations, for which attainable Reynolds number is limited only by grid resolution.

11.
Sci Rep ; 4: 6603, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25308187

RESUMO

We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

12.
J Phys Chem Lett ; 5(24): 4368-80, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26273989

RESUMO

Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

13.
Nat Commun ; 5: 4213, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25055053

RESUMO

Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry--calculating the ground-state molecular energy for He-H(+). The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future.

14.
Philos Trans A Math Phys Eng Sci ; 369(1944): 2362-70, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21536584

RESUMO

We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an arbitrary surface from the Boltzmann equation on the surface.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046705, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230410

RESUMO

We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.


Assuntos
Gases/química , Hidrodinâmica , Modelos Moleculares , Fenômenos Mecânicos , Conformação Molecular , Propriedades de Superfície , Fatores de Tempo
16.
Phys Rev Lett ; 100(6): 060503, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18352448

RESUMO

We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.

17.
Phys Rev Lett ; 96(4): 047006, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486877

RESUMO

We present the first experimental results on a device with more than two superconducting qubits. The circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is characterized using low-frequency impedance measurement with a superconducting tank circuit coupled to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.

18.
Science ; 309(5741): 1704-7, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16151006

RESUMO

The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

19.
Philos Trans A Math Phys Eng Sci ; 360(1792): 345-55, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16210184

RESUMO

We show that the flux-field expansion derived by Boghosian & Coveney for the Rothman-Keller immiscible fluid model can be derived in a simpler and more general way in terms of the completely symmetric tensor kernels introduced by those authors. Using this generalized flux-field expansion we show that the more complex amphiphilic model of Boghosian, Coveney & Emerton can also be derived from an underlying model of particle interactions. The consequences of this derivation are discussed in the context of previous equilibrium Ising-like lattice models and other non-equilibrium mesoscale models.


Assuntos
Difusão , Gases/química , Modelos Químicos , Reologia/métodos , Tensoativos/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos , Tamanho da Partícula , Propriedades de Superfície
20.
Philos Trans A Math Phys Eng Sci ; 360(1792): 357-66, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16214685

RESUMO

We describe the implementation of shear flow in a three-dimensional lattice-gas model for amphiphilic fluids. We investigate the effect of shear on the morphology of the bicontinuous ternary microemulsion phase, and in particular its effect on the formation and stability of a lamellar phase. Metastable lamellar phases were observed for both 32(3) and 64(3) systems subjected to shear, and the stability of preformed lamellar phases under shear flow established for both 64(3) and 128(3) systems. The effect of micellization on interfacial behaviour in these phases is discussed in the context of the linear non-equilibrium thermodynamic theory of rate processes and nonlinear Becker-Döring aggregation theory.


Assuntos
Cristalização/métodos , Difusão , Gases/química , Modelos Químicos , Reologia/métodos , Tensoativos/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos , Tamanho da Partícula , Resistência ao Cisalhamento , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa