Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652744

RESUMO

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Assuntos
Peso Corporal , Ingestão de Alimentos , Elementos Facilitadores Genéticos , Hipotálamo , Pró-Opiomelanocortina , Peixe-Zebra , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Camundongos , Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mamíferos/metabolismo , Mamíferos/genética
2.
J Neurosci ; 39(21): 4023-4035, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30886014

RESUMO

Food intake is tightly regulated by a group of neurons present in the arcuate nucleus of the hypothalamus, which release Pomc-encoded melanocortins, the absence of which induces marked hyperphagia and early-onset obesity. Although the relevance of hypothalamic POMC neurons in the regulation of body weight and energy balance is well appreciated, little is known about the transcription factors that establish the melanocortin neuron identity during brain development and its phenotypic maintenance in postnatal life. Here, we report that the transcription factor NKX2.1 is present in mouse hypothalamic POMC neurons from early development to adulthood. Electromobility shift assays showed that NKX2.1 binds in vitro to NKX binding motifs present in the neuronal Pomc enhancers nPE1 and nPE2 and chromatin immunoprecipitation assays detected in vivo binding of NKX2.1 to nPE1 and nPE2 in mouse hypothalamic extracts. Transgenic and mutant studies performed in mouse embryos of either sex and adult males showed that the NKX motifs present in nPE1 and nPE2 are essential for their transcriptional enhancer activity. The conditional early inactivation of Nkx2.1 in the ventral hypothalamus prevented the onset of Pomc expression. Selective Nkx2.1 ablation from POMC neurons decreased Pomc expression in adult males and mildly increased their body weight and adiposity. Our results demonstrate that NKX2.1 is necessary to activate Pomc expression by binding to conserved canonical NKX motifs present in nPE1 and nPE2. Therefore, NKX2.1 plays a critical role in the early establishment of hypothalamic melanocortin neuron identity and participates in the maintenance of Pomc expression levels during adulthood.SIGNIFICANCE STATEMENT Food intake and body weight regulation depend on hypothalamic neurons that release satiety-inducing neuropeptides, known as melanocortins. Central melanocortins are encoded byPomc, and Pomc mutations may lead to hyperphagia and severe obesity. Although the importance of central melanocortins is well appreciated, the genetic program that establishes and maintains fully functional POMC neurons remains to be explored. Here, we combined molecular, genetic, developmental, and functional studies that led to the discovery of NKX2.1, a transcription factor that participates in the early morphogenesis of the developing hypothalamus, as a key player in establishing the early identity of melanocortin neurons by activating Pomc expression. Thus, Nkx2.1 adds to the growing list of genes that participate in body weight regulation and adiposity.


Assuntos
Melanocortinas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Peso Corporal/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Gastroenterology ; 153(6): 1555-1567.e15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28859856

RESUMO

BACKGROUND & AIMS: The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS: Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS: Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS: MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.


Assuntos
Duodeno/metabolismo , Gastrinas/metabolismo , Neuroglia/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neoplasias Duodenais/enzimologia , Neoplasias Duodenais/genética , Neoplasias Duodenais/patologia , Duodeno/efeitos dos fármacos , Duodeno/patologia , Gastrinoma/enzimologia , Gastrinoma/genética , Gastrinoma/patologia , Gastrinas/genética , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteólise , Proteínas Proto-Oncogênicas/genética , Inibidores da Bomba de Prótons/farmacologia , Receptor de Colecistocinina B/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Fatores de Tempo , Ubiquitinação
4.
Alcohol Clin Exp Res ; 42(1): 195-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105118

RESUMO

BACKGROUND: A recent clinical trial found that pharmacological blockade of V1b receptors reduces alcohol relapse in alcohol-dependent patients. SSR149415 is a selective V1b receptor antagonist that has potential for development as an alcohol dependency treatment. In this study, we investigated whether SSR149415 alone or in combination with the mu-opioid receptor (MOP-r) antagonist naltrexone (NTN) would alter excessive alcohol drinking in mice. METHODS: Both sexes of C57BL/6J (B6) mice were subjected to a chronic intermittent access (IA) drinking paradigm (2-bottle choice, 24-hour access every other day) for 3 weeks. Sucrose and saccharin drinking were used as controls for alcohol-specific drug effects. Neuronal proopiomelanocortin (POMC) enhancer (nPE) knockout mice with hypothalamic-specific loss of POMC (including beta-endorphin, the main endogenous ligand of MOP-r) were used as a genetic control for the effects of NTN. RESULTS: Acute administration of SSR149415 (1 to 30 mg/kg) reduced alcohol intake and preference in a dose-dependent manner in both male and female B6 mice after IA. To investigate potential synergistic effects between NTN and SSR149415, we tested 6 different combination doses of SSR149415 and NTN, and found that a combination of SSR149415 (3 mg/kg) and NTN (1 mg/kg) reduced alcohol intake profoundly at doses lower than the individual effective doses in both sexes of B6 mice. We confirmed the effect of SSR149415 on reducing alcohol intake in nPE-/- male mice, consistent with independent mechanisms by which SSR149415 and NTN decrease alcohol drinking. CONCLUSIONS: The combination of V1b antagonist SSR149415 with NTN at individual subthreshold doses shows potential in alcoholism treatment, possibly with less adverse effects.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Antagonistas dos Receptores de Hormônios Antidiuréticos/administração & dosagem , Indóis/administração & dosagem , Naltrexona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Pirrolidinas/administração & dosagem , Receptores de Vasopressinas , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Proc Natl Acad Sci U S A ; 112(15): E1861-70, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825735

RESUMO

Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.


Assuntos
Adiposidade/fisiologia , Ingestão de Alimentos/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Adiposidade/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Dados de Sequência Molecular , Neurônios/citologia , Obesidade/genética , Obesidade/fisiopatologia , Pró-Opiomelanocortina/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
6.
PLoS Genet ; 11(2): e1004935, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671638

RESUMO

Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.


Assuntos
Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Pró-Opiomelanocortina/biossíntese , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Sequência Conservada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Camundongos , Neurônios/metabolismo , Filogenia , Gravidez , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética
7.
Dev Biol ; 416(1): 212-224, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27212025

RESUMO

The hypothalamus is a region of the anterior forebrain that controls basic aspects of vertebrate physiology, but the genes involved in its development are still poorly understood. Here, we investigate the function of the homeobox gene Rax/Rx in early hypothalamic development using a conditional targeted inactivation strategy in the mouse. We found that lack of Rax expression prior to embryonic day 8.5 (E8.5) caused a general underdevelopment of the hypothalamic neuroepithelium, while inactivation at later timepoints had little effect. The early absence of Rax impaired neurogenesis and prevented the expression of molecular markers of the dorsomedial hypothalamus, including neuropeptides Proopiomelanocortin and Somatostatin. Interestingly, the expression domains of genes expressed in the ventromedial hypothalamus and infundibulum invaded dorsal hypothalamic territory, showing that Rax is needed for the proper dorsoventral patterning of the developing medial hypothalamus. The phenotypes caused by the early loss of Rax are similar to those of eliminating the expression of the morphogen Sonic hedgehog (Shh) specifically from the hypothalamus. Consistent with this similarity in phenotypes, we observed that Shh and Rax are coexpressed in the rostral forebrain at late head fold stages and that loss of Rax caused a downregulation of Shh expression in the dorsomedial portion of the hypothalamus.


Assuntos
Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Hipotálamo/embriologia , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal , Desenvolvimento Embrionário/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
8.
J Neurosci ; 33(13): 5834-42, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536095

RESUMO

Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.


Assuntos
Tamanho Corporal/fisiologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Análise de Variância , Animais , Benzamidas/farmacocinética , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Estudos de Casos e Controles , Catatonia/induzido quimicamente , Catatonia/metabolismo , Antagonistas de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Haloperidol/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Feromônios/urina , Hipófise/efeitos dos fármacos , Prolactina/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/metabolismo , Radioimunoensaio , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Predomínio Social , Territorialidade , Trítio/farmacocinética
9.
Am J Physiol Endocrinol Metab ; 306(8): E904-15, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24518677

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and ß-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Estado Nutricional/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pró-Opiomelanocortina/genética , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 108(37): 15270-5, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876128

RESUMO

The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron-specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian-apparent LTR retrotransposon sometime between the metatherian/eutherian split (147 Mya) and the placental mammal radiation (≈ 90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.


Assuntos
Elementos Facilitadores Genéticos/genética , Evolução Molecular , Mamíferos/genética , Neurônios/metabolismo , Retroelementos/genética , Animais , Sequência de Bases , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/citologia , Filogenia , Placenta/metabolismo , Gravidez , Pró-Opiomelanocortina/genética , Fatores de Tempo
11.
Mol Metab ; 87: 101993, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025297

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons release potent anorexigenic neuropeptides, which suppress food intake and enhance energy expenditure via melanocortin receptors. Although the importance of central melanocortin in physiological regulation is well established, the underlying genetic mechanisms that define the functional identity of melanocortin neurons and maintain hypothalamic Pomc expression remain to be fully determined. In this study, we investigate the functional significance of Six3, a transcriptional regulator notably expressed in embryonic and adult mouse POMC neurons, in the regulation of hypothalamic Pomc expression and downstream physiological consequences. METHODS: We first evaluated the expression of Six3 in the developing and adult hypothalamus by double fluorescence in situ hybridization. Next, we assessed POMC immunoreactivity in mutant mice selectively lacking Six3 from Pomc-expressing neurons and quantified Pomc mRNA levels in a tamoxifen-inducible Six3 knockout mouse model activated at embryonic E9.5 days. We also determined glucose and insulin sensitivity, daily food intake, body composition and body weight in adult male and female mice lacking Six3 specifically from POMC neurons. Lastly, we assessed the physiological consequences of ablating Six3 from POMC neurons in adult mice. RESULTS: Six3 and Pomc were co-expressed in mouse hypothalamic neurons during development and adulthood. Mouse embryos deficient in Six3 showed reduced Pomc expression in the developing hypothalamus. Targeted deletion of Six3 specifically from POMC neurons resulted in decreased hypothalamic Pomc expression, increased daily food intake, enhanced glucose sensitivity and mild obesity in male but not in female mice. Finally, conditional removal of Six3 from POMC neurons in adult mice led to a reduction in hypothalamic POMC immunoreactivity with no significant effects in body weight or food intake. CONCLUSIONS: Altogether, our results demonstrate that Six3 plays an essential role in the early establishment of POMC neuron identity and the maintenance of physiological levels of hypothalamic Pomc expression. In addition, our study demonstrates that the functional significance of Six3 expression in POMC neurons is sexually dimorphic and age-dependent.


Assuntos
Proteínas de Homeodomínio , Hiperfagia , Hipotálamo , Camundongos Knockout , Neurônios , Obesidade , Pró-Opiomelanocortina , Animais , Feminino , Masculino , Camundongos , Ingestão de Alimentos , Metabolismo Energético , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética
14.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044906

RESUMO

Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use single-cell RNA-sequencing (scRNA-seq) to define the transcriptomes characterizing Pomc-expressing cells in the developing hypothalamus and translating ribosome affinity purification with RNA-sequencing (TRAP-seq) to analyze the subsequent translatomes of mature POMC neurons. Our data showed that Pomc-expressing neurons give rise to multiple developmental pathways expressing different levels of Pomc and unique combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts, represents the canonical arcuate POMC neurons. Additional cell clusters expressing medium or low levels of Pomc mature into different neuronal phenotypes featured by distinct sets of transcription factors, neuropeptides, processing enzymes, cell surface, and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development that continue to mature postnatally.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Fenótipo , Transcriptoma , Animais , Camundongos , Pró-Opiomelanocortina/metabolismo , RNA-Seq , Análise de Célula Única
15.
Neuropeptides ; 96: 102289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155088

RESUMO

RATIONALE: Obesity is a major health problem worldwide. An understanding of the factors that drive feeding behaviors is key to the development of pharmaceuticals to decrease appetite and consumption. Proopiomelanocortin (POMC), the melanocortin peptide precursor, is essential in the regulation of body weight and ingestive behaviors. Deletion of POMC or impairment of melanocortin signaling in the brain results in hyperphagic obesity. Neurons in the hypothalamic arcuate nucleus produce POMC and project to many areas including the nucleus accumbens (NAcc), which is well established in the rewarding and reinforcing effects of both food and drugs of abuse. OBJECTIVE: These studies sought to determine the role of melanocortins in the NAcc on consumption of and motivation to obtain access to standard rodent chow. METHODS: Male, C57BL/6J mice were microinjected bilaterally into the NAcc (100 nl/side) with the melanocortin receptor 3/4 agonist melanotan-II (MT-II; 0.1, 0.3, and 1 nmol), and ingestive behaviors were examined in both home cage and operant food self-administration experiments. In addition, the ability of MT-II in the NAcc to produce aversive properties or affect metabolic rate were tested. RESULTS: MT-II injected into the NAcc significantly decreased consumption in both home cage and operant paradigms, and furthermore decreased appetitive responding to gain access to food. There was no development of conditioned taste avoidance or change in metabolic parameters following anorexic doses of MT-II. CONCLUSIONS: MT-II in the NAcc decreased both the motivation to eat and the amount of food consumed without inducing an aversive state or affecting metabolic rate, suggesting a role for melanocortin signaling in the NAcc that is selective for appetite and satiety without affecting metabolism or producing an aversive state.


Assuntos
Núcleo Accumbens , Peptídeos Cíclicos , Pró-Opiomelanocortina , Receptor Tipo 4 de Melanocortina , alfa-MSH , Animais , Masculino , Camundongos , Melanocortinas/metabolismo , Camundongos Endogâmicos C57BL , Obesidade , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Peptídeos Cíclicos/farmacologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
16.
Endocrinology ; 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245347

RESUMO

PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.

17.
Mol Metab ; 53: 101312, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329773

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential regulators of energy balance. Selective loss of POMC production in these cells results in extreme obesity and metabolic comorbidities. Neurogenesis occurs in the adult hypothalamus, but it remains uncertain whether functional POMC neurons emerge in physiologically significant numbers during adulthood. Here, we tested whether Rax-expressing precursors generate POMC neurons in adult mice and rescue the metabolic phenotype caused by congenital hypothalamic POMC deficiency. METHODS: Initially, we identified hypothalamic Rax-expressing cell types using wild-type and Rax-CreERT2:Ai34D mice. Then we generated compound Rax-CreERT2:ArcPomcloxTB/loxTB mice in which endogenous hypothalamic Pomc expression is silenced, but can be restored by tamoxifen administration selectively in neurons derived from Rax+ progenitors. The number of POMC neurons generated by Rax+ progenitors in adult mice and their axonal projections was determined. The metabolic effects of these neurons were assessed by measuring food intake, bodyweight, and body composition, along with glucose and insulin levels. RESULTS: We found that Rax is expressed by tanycytes and a previously unrecognized cell type in the hypothalamic parenchyma of adult mice. Rax+ progenitors generated ~10% of the normal adult hypothalamic POMC neuron population within two weeks of tamoxifen treatment. The same rate and steady state of POMC neurogenesis persisted from young adult to aged mice. These new POMC neurons established terminal projections to brain regions that were involved in energy homeostasis. Mice with Rax+ progenitor-derived POMC neurons had reduced body fat mass, improved glucose tolerance, increased insulin sensitivity, and decreased bodyweight in proportion to the number of new POMC neurons. CONCLUSIONS: These data demonstrate that Rax+ progenitors generate POMC neurons in sufficient numbers during adulthood to mitigate the metabolic abnormalities of hypothalamic POMC-deficient mice. The findings suggest that adult hypothalamic neurogenesis is a robust phenomenon in mice that can significantly impact energy homeostasis.


Assuntos
Insuficiência Adrenal/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição/genética
18.
Endocrinology ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33693631

RESUMO

Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk. However, whether PC1/3-mediated POMC processing is absolutely tied to body weight regulation is not known. To investigate this question, we generated a Pomc-CreER  T2; Pcsk1  lox/lox mouse model in which Pcsk1 is specifically and temporally knocked out in POMC-expressing cells of adult mice by injecting tamoxifen at eight weeks of age. We then measured the impact of Pcsk1 deletion on POMC cleavage to ACTH and α-MSH, and on body weight. In whole pituitary, POMC cleavage was significantly impacted by the loss of Pcsk1, while hypothalamic POMC-derived peptide levels remained similar in all genotypes. However, intact POMC levels were greatly elevated in Pomc-CreER  T2; Pcsk1  lox/lox mice. Males expressed two-fold greater levels of pituitary PC1/3 protein than females, consistent with their increased POMC cleavage. Past studies show that mice with germline removal of PC1/3 do not develop obesity, while mice expressing mutant PC1/3 forms do develop obesity. We conclude that obesity pathways are not disrupted by PC1/3 loss solely in POMC-expressing cells, further disfavoring the idea that alterations in POMC processing underlie obesity in PCSK1 deficiency.

19.
J Neurosci ; 29(43): 13684-90, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19864580

RESUMO

Proopiomelanocortin (POMC) neurons have been intensively studied because of their essential role in regulating energy balance and body weight. Many effects of POMC neurons can be attributed to their release of cognate neuropeptides from secretory granules in axon terminals. However, these neurons also synaptically release non-peptide neurotransmitters. The aim of this study was to settle the controversy whether there are separate populations of POMC neurons that release GABA or glutamate. Transgenic mice expressing a red fluorescent protein [Discosoma red (DsRed)] driven by Pomc neuronal regulatory elements (POMC-DsRed) were crossed to mice that expressed green fluorescent protein (gfp) in GABAergic neurons (GAD67-gfp). Approximately 40% of POMC neurons in the arcuate nucleus of the double-transgenic mice expressed the GAD67-gfp transgene. In vitro neurotransmitter release was detected using whole-cell electrophysiologic recordings in cultured GAD67-gfp-positive and GAD67-gfp-negative POMC neurons that had formed recurrent synapses (autapses). Autapses from GAD67-gfp-positive neurons were uniformly GABAergic. In contrast, autapses from the GAD67-gfp-negative POMC neurons exclusively exhibited postsynaptic currents mediated by glutamate. Together, these results indicate that there are two subpopulations of POMC neurons in the arcuate nucleus differentiated by their amino acid neurotransmitter phenotype. Whole-cell voltage-clamp recordings from POMC neurons in live brain slices indicated that GABAergic and glutamatergic POMC neurons are under similar presynaptic and postsynaptic regulation, although the GABAergic POMC neurons are smaller and have higher input resistance. GABAergic and glutamatergic POMC neurons may mediate distinct aspects of POMC neuron function, including the regulation of energy homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Células Cultivadas , Feminino , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/genética , Sinapses/fisiologia , Proteína Vermelha Fluorescente
20.
Front Horm Res ; 38: 59-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20616496

RESUMO

The role of dopaminergic receptors in the control of GH release remains controversial. The dopamine receptor 2 (D2R) knockout mouse represents a useful model to study the participation of the D2R on growth and GHRH-GH regulation. These knockout mice have hyperprolactinemia and lactotrope hyperplasia, but unexpectedly, they are also growth retarded. In D2R knockout mice there is a significant decrease in somatotrope population, which is paralleled by decreased GH content and output from pituitary cells. The sensitivity of GHRH-induced GH and cAMP release is similar between genotypes, even though the response amplitude is lower in knockouts. We point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level, and both somatostatin and GHRH mRNA expression are altered in knockout mice. The similarity of the pituitary defect in the D2R knockout mouse to that of GHRH deficient models suggests a probable mechanism. Loss of dopamine signaling via hypothalamic D2Rs at a critical age may cause inadequate GHRH secretion subsequently leading to inappropriate somatotrope lineage development. Furthermore, GH pulsatility, which depends on a regulated temporal balance between GHRH and somatostatin output might be compromised in D2R knockout mice, leading to lower IGF-I, and growth retardation.


Assuntos
Dopamina/fisiologia , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Hormônio do Crescimento/fisiologia , Neurotransmissores/fisiologia , Acromegalia/tratamento farmacológico , Animais , Crescimento , Humanos , Camundongos , Receptores de Dopamina D2/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa