Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 204(7): 1943-1953, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32102902

RESUMO

The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1157-165-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles. The third TCR engaged a flipped peptide conformation, leading to the recognition of off-target peptides sharing little similarity with the cognate peptide. These data show that TCRs specific for a cognate peptide recognize discrete peptide repertoires and reconciles how an individual's limited TCR repertoire following negative selection in the thymus is able to recognize a vastly larger antigenic pool.


Assuntos
Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular , Humanos , Biblioteca de Peptídeos
2.
Platelets ; 32(3): 352-367, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32129691

RESUMO

C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.


Assuntos
Lectinas Tipo C/metabolismo , Sistema Linfático/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
3.
Gene Ther ; 25(3): 176-191, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29789639

RESUMO

Adoptive T-cell therapy, incorporating engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs), target tumor antigens with high affinity and specificity. To increase the potency of adoptively transferred T cells, patients are conditioned with lymphodepleting chemotherapy regimens prior to adoptive T-cell transfer (ACT), and data suggest that fludarabine is an important component of an effective regimen. In a recent clinical trial using CAR-T cells engineered to target the CD19 B-cell antigen to treat acute lymphoblastic leukemia, JCAR-015 (NCT02535364), two patient deaths due to cerebral edema led to trial suspension. The lymphodepleting agent fludarabine was suggested as the causative agent, in part due to its known association with neurotoxicity and its ability to induce greater potency. In a similar CAR-T study also incorporating fludarabine in the preconditioning regimen, ZUMA-1 (NCT02348216), one patient died of cerebral edema. However, subsequent deaths in the JCAR-015 study after removal of fludarabine and improved understanding behind the mechanisms of CAR-T-related encephalopathy syndrome (CRES) indicate that fludarabine is not the primary causative agent of cerebral edema and that it can be safely incorporated into the preconditioning regimen for ACT. Since entering clinical use in the late 1980s as a chemotherapy agent, fludarabine and similar analogs have been associated with lethal neurological toxicity, yet the manifestation and timing of symptoms are distinct to those observed recently in ACT. Herein, we review the history of fludarabine development as a chemotherapeutic agent, and discuss the safety of its continued use in preconditioning regimens for ACT.


Assuntos
Receptores de Antígenos de Linfócitos T/uso terapêutico , Vidarabina/análogos & derivados , Antígenos CD19/imunologia , Humanos , Imunoterapia Adotiva/métodos , Síndromes Neurotóxicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Vidarabina/efeitos adversos , Vidarabina/farmacologia , Vidarabina/uso terapêutico
4.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1016-L1029, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28839100

RESUMO

There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS.


Assuntos
Plaquetas/imunologia , Lectinas Tipo C/imunologia , Lesão Pulmonar/imunologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Plaquetas/patologia , Deleção de Genes , Lectinas Tipo C/genética , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Macrófagos Alveolares/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais/genética
5.
Blood ; 125(1): 144-54, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25352128

RESUMO

We have used a novel knockin mouse to investigate the effect of disruption of phosphotyrosine binding of the N-terminal SH2 domain of Syk on platelet activation by GPVI, CLEC-2, and integrin αIIbß3. The Syk(R41Afl/fl) mouse was crossed to a PF4-Cre(+) mouse to induce expression of the Syk mutant in the megakaryocyte/platelet lineage. Syk(R41Afl/fl;PF4-Cre) mice are born at approximately 50% of the expected frequency and have a similar phenotype to Syk(fl/fl;PF4-Cre) mice, including blood-lymphatic mixing and chyloascites. Anastomosis of the venous and lymphatic vasculatures can be seen in the mesenteric circulation accounting for rapid and continuous mixing of the 2 vasculatures. Platelet activation by CLEC-2 and GPVI is abolished in Syk(R41Afl/fl;PF4-Cre) platelets. Syk phosphorylation on Tyr519/20 is blocked in CLEC-2-stimulated platelets, suggesting a model in which binding of Syk via its N-terminal SH2 domain regulates autophosphorylation. In contrast, outside-in signaling by integrin αIIbß3 is not altered, but it is inhibited in the presence of inhibitors of Src and Syk tyrosine kinases. These results demonstrate that αIIbß3 regulates Syk through an ITAM-independent pathway in mice and provide novel insight into the course of events underlying Syk activation and hemITAM phosphorylation by CLEC-2.


Assuntos
Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lectinas Tipo C/metabolismo , Fosfoproteínas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Tirosina Quinases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Fosfotirosina/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Púrpura Trombocitopênica Idiopática/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Domínios de Homologia de src
6.
Blood ; 125(24): 3769-77, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25908104

RESUMO

Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplanin(fl/fl) mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Circulação Cerebrovascular , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Animais , Plaquetas/metabolismo , Padronização Corporal , Encéfalo/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Ativação Plaquetária , Agregação Plaquetária , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo
7.
Eur J Immunol ; 45(9): 2484-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26173808

RESUMO

Expression of mouse C-type lectin-like receptor 2 (CLEC-2) has been reported on circulating CD11b(high) Gr-1(high) myeloid cells and dendritic cells (DCs) under basal conditions, as well as on a variety of leucocyte subsets following inflammatory stimuli or in vitro cell culture. However, previous studies assessing CLEC-2 expression failed to use CLEC-2-deficient mice as negative controls and instead relied heavily on single antibody clones. Here, we generated CLEC-2-deficient adult mice using two independent approaches and employed two anti-mouse CLEC-2 antibody clones to investigate surface expression on hematopoietic cells from peripheral blood and secondary lymphoid organs. We rule out constitutive CLEC-2 expression on resting DCs and show that CLEC-2 is upregulated in response to LPS-induced systemic inflammation in a small subset of activated DCs isolated from the mesenteric lymph nodes but not the spleen. Moreover, we demonstrate for the first time that peripheral blood B lymphocytes present exogenously derived CLEC-2 and suggest that both circulating B lymphocytes and CD11b(high) Gr-1(high) myeloid cells lose CLEC-2 following entry into secondary lymphoid organs. These results have significant implications for our understanding of CLEC-2 physiological functions.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/genética , Células Mieloides/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos B/patologia , Plaquetas/imunologia , Plaquetas/patologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Movimento Celular/imunologia , Células Dendríticas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/deficiência , Lipopolissacarídeos , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/patologia , Especificidade de Órgãos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Transdução de Sinais , Baço/imunologia , Baço/patologia
8.
Blood ; 123(20): 3200-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532804

RESUMO

The importance of CLEC-2, a natural ligand/receptor for Gp38/Podoplanin, in the formation of the lymphatic vasculature has recently been demonstrated. As the development and maintenance of lymph nodes (LNs) is dependent on the formation of the lymphatic vasculature and the differentiation of Gp38/Podoplanin(+) stromal cells, we investigated the role of CLEC-2 in lymphoneogenesis and LN homeostasis. Using constitutive Clec1b(-/-) mice, we showed that while CLEC-2 was not necessary for initiation of the LN anlage, it was required at late stages of development. Constitutive deletion of CLEC-2 induced a profound defect in lymphatic endothelial cell proliferation, resulting in lack of LNs at birth. In contrast, conditional deletion of CLEC-2 in the megakaryocyte/platelet lineage in Clec1b(fl/fl)PF4-Cre mice led to the development of blood-filled LNs and fibrosis, in absence of a proliferative defect of the lymphatic endothelial compartment. This phenotype was also observed in chimeric mice reconstituted with Clec1b(fl/fl)PF4-Cre bone marrow, indicating that CLEC-2 expression in platelets was required for LN integrity. We demonstrated that LNs of Clec1b(fl/fl)PF4-Cre mice are able to sustain primary immune responses but show a defect in immune cell recirculation after repeated immunizations, thus suggesting CLEC-2 as target in chronic immune response.


Assuntos
Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Linfonodos/crescimento & desenvolvimento , Animais , Plaquetas/metabolismo , Proliferação de Células , Células Cultivadas , Endotélio Linfático/citologia , Endotélio Linfático/metabolismo , Deleção de Genes , Linfonodos/citologia , Linfonodos/metabolismo , Linfangiogênese , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Emerg Med J ; 32(2): 153-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096860

RESUMO

Traumatic wounds are a common reason for patients to attend emergency departments. There are many ways of managing these wounds from glue to suturing. The authors conducted a patient survey to identify the outcome measures most important to patients after closure of traumatic wounds. The results showed that having the least chance of infection was the most important outcome, followed by being looked after by caring staff and a quick recovery. These finding were consistent regardless of the anatomical location of the wound or age of the patient. This information is being used to guide the authors in the most appropriate outcome measures for further research.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Preferência do Paciente/estatística & dados numéricos , Ferimentos e Lesões/terapia , Adulto , Fatores Etários , Gerenciamento Clínico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Técnicas de Sutura , Cicatrização , Infecção dos Ferimentos/prevenção & controle , Adulto Jovem
10.
Blood ; 119(7): 1747-56, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22186994

RESUMO

The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other hematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that depends on CLEC-2 and Syk. These studies found that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behavior in vitro.


Assuntos
Plaquetas/metabolismo , Linhagem da Célula/genética , Crescimento e Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lectinas Tipo C/fisiologia , Megacariócitos/metabolismo , Proteínas Tirosina Quinases/fisiologia , Animais , Animais Recém-Nascidos , Plaquetas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinase Syk , Trombopoese/genética , Trombopoese/fisiologia
11.
Adv Anat Embryol Cell Biol ; 214: 93-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24276889

RESUMO

Blood platelets have recently been proposed to play a critical role in the development and repair of the lymphatic system. The platelet C-type lectin receptor CLEC-2 and its ligand, the transmembrane protein Podoplanin, which is expressed at high levels on lymphatic endothelial cells (LECs), are required to prevent mixing of the blood and lymphatic vasculatures during mid-gestation. A similar defect is seen in mice deficient in the tyrosine kinase Syk, which plays a vital role in mediating platelet activation by CLEC-2. Furthermore, blood-lymphatic mixing is also present in mice with platelet-/megakaryocyte-specific deletions of CLEC-2 and Syk, suggesting that the phenotype is platelet in origin. The molecular basis of this effect is not known, but it is independent of the major platelet receptors that support hemostasis, including integrin αIIbß3 (GPIIb-IIIa). Radiation chimeric mice reconstituted with CLEC-2-deficient or Syk-deficient bone marrow exhibit blood-lymphatic mixing in the intestines, illustrating a role for platelets in repair and growth of the lymphatic system. In this review, we describe the events that led to the identification of this novel role of platelets and discuss possible molecular mechanisms and the physiological and pathophysiological significance.


Assuntos
Plaquetas/fisiologia , Linfangiogênese , Vasos Linfáticos/embriologia , Animais , Humanos , Lectinas Tipo C/metabolismo , Vasos Linfáticos/fisiologia , Glicoproteínas de Membrana/metabolismo
12.
Platelets ; 25(1): 1-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23469931

RESUMO

Cyclic guanosine-3',5'-monophoshate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides (NP; e.g. atrial NP [ANP]), which activate soluble and particulate guanylyl cyclases, respectively. The role of NO in regulating cGMP and platelet function is well documented, whereas there is little evidence supporting a role for NPs in regulating platelet reactivity. By studying platelet aggregation and secretion in response to a PAR-1 peptide, collagen and ADP, and phosphorylation of the cGMP-dependent protein kinase (PKG) substrate vasodilator-stimulated phosphoprotein (VASP) at serine 239, we evaluated the effects of NPs in the absence or presence of the non-selective cGMP and cAMP phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Our results show that NPs, possibly through the clearance receptor (natriuretic peptide receptor-C) expressed on platelet membranes, increase VASP phosphorylation but only following PDE inhibition, indicating a small, localised cGMP synthesis. As platelet aggregation and secretion measured under the same conditions were not affected, we conclude that the magnitude of PKG activation achieved by NPs in platelets per se is not sufficient to exert functional inhibition of platelet involvement in haemostasis.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Moléculas de Adesão Celular/sangue , Proteínas dos Microfilamentos/sangue , Peptídeos Natriuréticos/farmacologia , Fosfoproteínas/sangue , 1-Metil-3-Isobutilxantina/farmacologia , Plaquetas/enzimologia , GMP Cíclico/biossíntese , GMP Cíclico/sangue , Proteínas Quinases Dependentes de GMP Cíclico/sangue , Humanos , Peptídeos Natriuréticos/sangue , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos
13.
Environ Res ; 109(8): 1028-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19762014

RESUMO

Low income, multi-ethnic communities in Main South/Piedmont neighborhoods of Worcester, Massachusetts are exposed to cumulative, chronic built-environment stressors, and have limited capacity to respond, magnifying their vulnerability to adverse health outcomes. "Neighborhood STRENGTH", our community-based participatory research (CBPR) project, comprised four partners: a youth center; an environmental non-profit; a community-based health center; and a university. Unlike most CBPR projects that are single topic-focused, our 'holistic', systems-based project targeted five priorities. The three research-focused/action-oriented components were: (1) participatory monitoring of indoor and outdoor pollution; (2) learning about health needs and concerns of residents through community-based listening sessions; (3) engaging in collaborative survey work, including a household vulnerability survey and an asthma prevalence survey for schoolchildren. The two action-focused/research-informed components were: (4) tackling persistent street trash and illegal dumping strategically; and (5) educating and empowering youth to promote environmental justice. We used a coupled CBPR-capacity building approach to design, vulnerability theory to frame, and mixed methods: quantitative environmental testing and qualitative surveys. Process and outcomes yielded important lessons: vulnerability theory helps frame issues holistically; having several topic-based projects yielded useful information, but was hard to manage and articulate to the public; access to, and engagement with, the target population was very difficult and would have benefited greatly from having representative residents who were paid at the partners' table. Engagement with residents and conflict burden varied highly across components. Notwithstanding, we built enabling capacity, strengthened our understanding of vulnerability, and are able to share valuable experiential knowledge.


Assuntos
Poluentes Ambientais/toxicidade , Etnicidade , Saúde Holística , Pobreza , Pesquisa , Monitoramento Ambiental , Humanos , Massachusetts
14.
Cancer Treat Rev ; 77: 35-43, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31207478

RESUMO

Immunotherapeutic strategies have revolutionised cancer therapy in recent years, bringing meaningful improvements in outcomes for patients with previously intractable conditions. These successes have, however, been largely limited to certain types of liquid tumours and a small subset of solid tumours that are known to be particularly immunogenic. Broadening these advances across the majority of tumour indications, which are characterised by an immune-excluded, immune-deserted or immune-suppressed ('cold') phenotype, will require alternative approaches that are able to specifically address this unique biological environment. Several newer therapeutic modalities, including adoptive cell therapy and T cell redirecting bispecific molecules, are considered to hold particular promise and are being investigated in early phase clinical trials across various solid tumour indications. ImmTAC molecules are a novel class of T cell redirecting bispecific biologics that exploit TCR-based targeting of tumour cells; providing potent and highly specific access to the vast landscape of intracellular targets. The first of these reagents to reach the clinic, tebentafusp (IMCgp100), has generated demonstrable clinical efficacy in an immunologically cold solid tumour with a high unmet need. Here, we highlight the key elements of the ImmTAC platform that make it ideally positioned to overcome the cold tumour microenvironment in an off-the-shelf format.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Produtos Biológicos/administração & dosagem , Humanos , Imunoterapia Adotiva/métodos , Proteínas/imunologia , Anticorpos de Cadeia Única/imunologia , Antígeno gp100 de Melanoma/imunologia
15.
Structure ; 26(2): 187-198.e4, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29336885

RESUMO

Coagulation factor XIa is a candidate target for anticoagulants that better separate antithrombotic efficacy from bleeding risk. We report a co-crystal structure of the FXIa protease domain with DEF, a human monoclonal antibody that blocks FXIa function and prevents thrombosis in animal models without detectable increased bleeding. The light chain of DEF occludes the FXIa S1 subsite and active site, while the heavy chain provides electrostatic interactions with the surface of FXIa. The structure accounts for the specificity of DEF for FXIa over its zymogen and related proteases, its active-site-dependent binding, and its ability to inhibit substrate cleavage. The inactive FXIa protease domain used to obtain the DEF-FXIa crystal structure reversed anticoagulant activity of DEF in plasma and in vivo and the activity of a small-molecule FXIa active-site inhibitor in vitro. DEF and this reversal agent for FXIa active-site inhibitors may help support clinical development of FXIa-targeting anticoagulants.


Assuntos
Anticorpos Monoclonais/metabolismo , Fator XIa/metabolismo , Animais , Anticoagulantes , Sítios de Ligação de Anticorpos , Humanos , Conformação Proteica , Trombose/metabolismo
16.
PLoS One ; 13(10): e0205491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321203

RESUMO

Robust preclinical testing is essential to predict clinical safety and efficacy and provide data to determine safe dose for first-in-man studies. There are a growing number of examples where the preclinical development of drugs failed to adequately predict clinical adverse events in part due to their assessment with inappropriate preclinical models. Preclinical investigations of T cell receptor (TCR)-based immunotherapies prove particularly challenging as these biologics are human-specific and thus the conventional testing in animal models is inadequate. As these molecules harness the full force of the immune system, and demonstrate tremendous potency, we set out to design a preclinical package that would ensure adequate evaluation of these therapeutics. Immune Mobilising Monoclonal TCR Against Cancer (ImmTAC) molecules are bi-specific biologics formed of an affinity-enhanced TCR fused to an anti-CD3 effector function. ImmTAC molecules are designed to activate human T lymphocytes and target peptides within the context of a human leukocyte antigen (HLA), thus require an intact human immune system and peptidome for suitable preclinical screening. Here we draw upon the preclinical testing of four ImmTAC molecules, including IMCgp100, the first ImmTAC molecule to reach the clinic, to present our comprehensive, informative and robust approach to in vitro preclinical efficacy and safety screening. This package comprises a broad range of cellular and molecular assays using human tissues and cultured cells to test efficacy, safety and specificity, and hence predict human responses in clinical trials. We propose that this entirely in vitro package offers a potential model to be applied to screening other TCR-based biologics.


Assuntos
Anticorpos Biespecíficos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Fluxo de Trabalho
17.
Thromb Haemost ; 113(5): 1109-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694214

RESUMO

Platelet-specific deletion of CLEC-2, which signals through Src and Syk kinases, or global deletion of its ligand podoplanin results in blood-filled lymphatics during mouse development. Platelet-specific Syk deficiency phenocopies this defect, indicating that platelet activation is required for lymphatic development. In the present study, we investigated whether CLEC-2-podoplanin interactions could support platelet arrest from blood flow and whether platelet signalling is required for stable platelet adhesion to lymphatic endothelial cells (LECs) and recombinant podoplanin under flow. Perfusion of human or mouse blood over human LEC monolayers led to platelet adhesion and aggregation. Following αIIbß3 blockade, individual platelets still adhered. Platelet binding occurred at venous but not arterial shear rates. There was no adhesion using CLEC-2-deficient blood or to vascular endothelial cells (which lack podoplanin). Perfusion of human blood over human Fc-podoplanin (hFcPDPN) in the presence of monoclonal antibody IV.3 to block FcγRIIA receptors led to platelet arrest at similar shear rates to those used on LECs. Src and Syk inhibitors significantly reduced global adhesion of human or mouse platelets to LECs and hFcPDPN. A similar result was seen using Syk-deficient mouse platelets. Reduced platelet adhesion was due to a decrease in the stability of binding. In conclusion, our data reveal that CLEC-2 is an adhesive receptor that supports platelet arrest to podoplanin under venous shear. Src/Syk-dependent signalling stabilises platelet adhesion to podoplanin, providing a possible molecular mechanism contributing to the lymphatic defects of Syk-deficient mice.


Assuntos
Plaquetas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Adesividade Plaquetária , Proteínas Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Alelos , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Vídeo , Ativação Plaquetária/fisiologia , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Quinase Syk
18.
J Clin Invest ; 125(12): 4429-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571395

RESUMO

Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin-like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI-mediated (GPVI-mediated) platelet activation. After infection, IFN-γ release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-γ, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Trombose/metabolismo , Animais , Plaquetas/patologia , Interferon gama/genética , Interferon gama/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Infecções por Salmonella/complicações , Infecções por Salmonella/genética , Infecções por Salmonella/patologia , Trombose/etiologia , Trombose/genética , Trombose/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
19.
Thromb Res ; 129 Suppl 1: S30-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22682130

RESUMO

It has long been recognised that the function of platelets in health and disease span far beyond their roles in haemostasis and thrombosis. The observation that tumour cells induce platelet aggregation was followed by extensive experimental evidence linking platelets to cancer progression. Aggregated platelets coat tumour cells during their transit through the bloodstream and mediate adherence to vascular endothelium, protection from shear stresses, evasion from immune molecules, and release of an array of bioactive molecules that facilitate tumour cell extravasation and growth at metastatic sites. The sialyated membrane glycoprotein podoplanin is found on the leading edge of tumour cells and is thought to influence their migratory and invasive properties. Podoplanin elicits powerful platelet aggregation and is the endogenous ligand for the platelet C-type lectin receptor, CLEC-2, which itself regulates podoplanin signalling. Here, the bidirectional relationship between CLEC-2 and podoplanin is described and considered in the context of tumour growth and metastasis.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Metástase Neoplásica/fisiopatologia , Animais , Humanos , Metástase Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa