Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 143(3): 367-78, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21029860

RESUMO

ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.


Assuntos
DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Cromossomos de Mamíferos/metabolismo , Ilhas de CpG , DNA Helicases/genética , DNA Ribossômico/metabolismo , Quadruplex G , Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Camundongos , Repetições Minissatélites , Mutação , Proteínas Nucleares/genética , Telômero/metabolismo , Proteína Nuclear Ligada ao X
2.
Br J Haematol ; 193(3): 556-560, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33851417

RESUMO

The clinical significance of low-frequency deletions of 17p13 [tumour protein p53 (TP53)] in patients with chronic lymphocytic leukaemia (CLL) is currently unclear. Low-frequency del17p clones (<25%) were identified in 15/95 patients in the Australasian Leukaemia and Lymphoma Group (ALLG)/CLL Australian Research Consortium (CLLARC) CLL5 trial. Patients with low del17p, without tumour protein p53 (TP53) mutation, had significantly longer progression-free survival and overall survival durations than patients with high del17p clones. In 11/15 cases with low-frequency del17p, subclones solely with del17p or del13q were also noted. These data suggest that low-frequency del17p does not necessarily confer a poor outcome in CLL and challenges the notion of del13q as a founding event in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/mortalidade , Adulto , Austrália/epidemiologia , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
3.
Br J Haematol ; 185(1): 65-78, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30656643

RESUMO

Chronic lymphocytic leukaemia (CLL) remains the most common incurable malignancy of B cells in the western world. Patient outcomes are heterogeneous and can be difficult to predict with current prognostic markers. Here, we used a quantitative label-free proteomic technique to ascertain differences in the B-cell proteome from healthy donors and CLL patients with either mutated (M-CLL) or unmutated (UM-CLL) IGHV to identify new prognostic markers. In peripheral B-CLL cells, 349 (22%) proteins were differentially expressed between normal B cells and B-CLL cells and 189 (12%) were differentially expressed between M-CLL and UM-CLL. We also examined the proteome of proliferating CLL cells in the lymph nodes, and identified 76 (~8%) differentially expressed proteins between healthy and CLL lymph nodes. B-CLL cells show over-expression of proteins involved in lipid and cholesterol metabolism. A comprehensive lipidomic analysis highlighted large differences in glycolipids and sphingolipids. A shift was observed from the pro-apoptotic lipid ceramide towards the anti-apoptotic/chemoresistant lipid, glucosylceramide, which was more evident in patients with aggressive disease (UM-CLL). This study details a novel quantitative proteomic technique applied for the first time to primary patient samples in CLL and highlights that primary CLL lymphocytes display markers of a metabolic shift towards lipid synthesis and breakdown.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Redes e Vias Metabólicas , Biomarcadores , Biópsia , Estudos de Casos e Controles , Biologia Computacional , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Lipidômica/métodos , Linfonodos/patologia , Masculino , Espectrometria de Massas , Metabolômica/métodos , Modelos Biológicos
4.
Cytometry A ; 91(11): 1088-1095, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024486

RESUMO

Intra-tumor genetic heterogeneity is a hallmark of cancer. The ability to monitor and analyze these sub-clonal cell populations can be considered key to successful treatment, particularly in the modern era of targeted therapies. Although advances in sequencing technologies have significantly improved our ability to analyze the mutational landscape of tumors, this utility is reduced when considering small, but clinically significant sub-clones, that is, those representing <10% of the tumor burden. We have developed a high-throughput method that utilizes a 17-probe labeled bacterial artificial chromosome contig to quantify sub-clonal populations of cells based on deletion of a single locus. Chronic lymphocytic leukemia (CLL) cells harboring deletion of the short arm of chromosome 17 (del17p), an important prognostic marker for CLL were used to demonstrate the technique. Sub-clones of del17p cells were quantified and isolated from heterogeneous CLL populations using fluorescence in situ hybridization in suspension (FISH-IS) and the locus specific probe set. Using the combination of FISH-IS with the locus-specific probe set enables automated analysis of tens of thousands of cells, accurately quantifying and isolating cells carrying a del17p. Based on the fluorescence intensity of 17p probes, 17p (TP53) deleted cells were identified and sorted using flow cytometric techniques, and enrichment was demonstrated using single nucleotide polymorphism analysis. The ability to separate sub-clones of cells based on genetic heterogeneity, independent of the clone size, highlights the potential application of this method not only in the diagnostic and prognostic setting, but also as an unbiased approach to enable further detailed genetic analysis of the sub-clone with deep sequencing approaches. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Leucemia Linfocítica Crônica de Células B/patologia , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Células Clonais/patologia , Heterogeneidade Genética , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Prognóstico , Proteína Supressora de Tumor p53/genética
5.
BMC Med Genet ; 18(1): 52, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482824

RESUMO

BACKGROUND: Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to determine the genetic cause of syndromic congenital cataract in an Australian mother and son. METHOD: Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein changing. Variants were assessed for segregation with the phenotype in the affected mother. RESULT: A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G, p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from public variant databases. CONCLUSION: The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family.


Assuntos
Catarata/congênito , Deficiências do Desenvolvimento/genética , Perda Auditiva/genética , Fatores de Transcrição Maf/genética , Mutação de Sentido Incorreto , Convulsões/genética , Adulto , Sequência de Aminoácidos , Animais , Catarata/genética , Feminino , Humanos , Fatores de Transcrição Maf/química , Masculino , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
7.
Blood ; 123(10): 1586-95, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24443441

RESUMO

In this study, we report on 8 compound heterozygotes for mutations in the key erythroid transcription factor Krüppel-like factor 1 in patients who presented with severe, transfusion-dependent hemolytic anemia. In most cases, the red cells were hypochromic and microcytic, consistent with abnormalities in hemoglobin synthesis. In addition, in many cases, the red cells resembled those seen in patients with membrane defects or enzymopathies, known as chronic nonspherocytic hemolytic anemia (CNSHA). Analysis of RNA and protein in primary erythroid cells from these individuals provided evidence of abnormal globin synthesis, with persistent expression of fetal hemoglobin and, most remarkably, expression of large quantities of embryonic globins in postnatal life. The red cell membranes were abnormal, most notably expressing reduced amounts of CD44 and, consequently, manifesting the rare In(Lu) blood group. Finally, all tested patients showed abnormally low levels of the red cell enzyme pyruvate kinase, a known cause of CNSHA. These patients define a new type of severe, transfusion-dependent CNSHA caused by mutations in a trans-acting factor (Krüppel-like factor 1) and reveal an important pathway regulating embryonic globin gene expression in adult humans.


Assuntos
Anemia Hemolítica/etiologia , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Mutação , Reação Transfusional , Adolescente , Adulto , Sequência de Aminoácidos , Anemia Hemolítica/sangue , Anemia Hemolítica/genética , Criança , Pré-Escolar , Sequência Conservada , Índices de Eritrócitos , Eritrócitos/metabolismo , Feminino , Hemoglobina Fetal/química , Ordem dos Genes , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Adulto Jovem , alfa-Globinas/metabolismo , Globinas beta/metabolismo
8.
Front Ophthalmol (Lausanne) ; 4: 1384428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984117

RESUMO

Intercellular adhesion molecule 1 (ICAM-1) is a central cell adhesion molecule for retinal transendothelial migration of the leukocytes in non-infectious posterior uveitis. Inhibiting ICAM1 gene transcription reduces induction of ICAM-1 in inflamed retinal endothelium. Based on published literature implicating transcription factor ETS-1 as an activator of ICAM1 gene transcription, we investigated the effect of ETS-1 blockade on ICAM-1 levels in cytokine-stimulated human retinal endothelial cells. We first examined ICAM1 and ETS1 transcript expression in human retinal endothelial cells exposed to tumor necrosis factor-alpha (TNF-α) or interleukin-1beta (IL-1ß). ICAM1 and ETS1 transcripts were increased in parallel in primary human retinal endothelial cell isolates (n = 5) after a 4-hour stimulation with TNF-α or IL-1ß (p ≤ 0.012 and ≤ 0.032, respectively). We then assessed the effect of ETS-1 blockade by small interfering (si)RNA on cellular ICAM1 transcript and membrane-bound ICAM-1 protein. ETS1 transcript was reduced by greater than 90% in cytokine-stimulated and non-stimulated human retinal endothelial cell monolayers following a 48-hour treatment with two ETS-1-targeted siRNA, in comparison to negative control non-targeted siRNA (p ≤ 0.0002). The ETS-1 blockade did not reduce ICAM1 transcript expression nor levels of membrane-bound ICAM-1 protein, rather it increased both for a majority of siRNA-treatment and cytokine-stimulation conditions (p ≤ 0.018 and ≤ 0.004, respectively). These unexpected findings indicate that ETS-1 blockade increases ICAM-1 transcript and protein levels in human retinal endothelial cells. Thus ETS-1-targeting would be expected to promote rather than inhibit retinal transendothelial migration of leukocytes in non-infectious posterior uveitis.

9.
Hum Mutat ; 34(8): 1140-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23616472

RESUMO

Although mutations causing monogenic disorders most frequently lie within the affected gene, sequence variation in complex disorders is more commonly found in noncoding regions. Furthermore, recent genome- wide studies have shown that common DNA sequence variants in noncoding regions are associated with "normal" variation in gene expression resulting in cell-specific and/or allele-specific differences. The mechanism by which such sequence variation causes changes in gene expression is largely unknown. We have addressed this by studying natural variation in the binding of key transcription factors (TFs) in the well-defined, purified cell system of erythropoiesis. We have shown that common polymorphisms frequently directly perturb the binding sites of key TFs, and detailed analysis shows how this causes considerable (~10-fold) changes in expression from a single allele in a tissue-specific manner. We also show how a SNP, located at some distance from the recognized TF binding site, may affect the recruitment of a large multiprotein complex and alter the associated chromatin modification of the variant regulatory element. This study illustrates the principles by which common sequence variation may cause changes in tissue-specific gene expression, and suggests that such variation may underlie an individual's propensity to develop complex human genetic diseases.


Assuntos
Células Eritroides/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nucleosídeo Difosfato Quinase D/genética , Nucleosídeo Difosfato Quinase D/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico
10.
Nat Genet ; 30(4): 441-5, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11889467

RESUMO

Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.


Assuntos
Proteínas de Drosophila/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação , Cromossomo X , Sequência de Aminoácidos , Animais , Saúde da Família , Feminino , Haplótipos , Humanos , Masculino , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Hibridização de Ácido Nucleico , Linhagem , Poli A/genética , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa